Contents

Form Design What is new?

VCL and components humor

Database API

General Programming OLE

Report Smith 32 Bits

Microsoft stuff Errors and Error Messages

A chap who lived in Rawalpindi

Who did not speak Greek, French or Hindi
Who wanted to buy
What he called Delphi

While actually it should have been Delphi.

Disclaimer

Updates to this file are to be found in section 7 (Object Pascal) of the Delphi forum on
compuserve.

It is also available on
http://www.borland.com/TechInfo/delphi/whatsnew/dwnloads.html



Screen Resolution

When designing forms, it is sometimes helpful to write the code so that the screen and
all of its objects are displayed at the same size no matter what the screen resolution is.
Here is some code to show how that is done:

implementation

const
ScreenWidth: LongInt = 800; {I designed my form in 800x600 mode.}
ScreenHeight: LongInt = 600;

{$R *.DFM}

procedure TForml.FormCreate (Sender: TObject);

var
i, OldFormWidth: integer;
begin
scaled := true;
if (screen.width <> ScreenWidth) then begin
OldFormWidth := width;
height := longint (height) * longint (screen.height) DIV ScreenHeight;
width := longint (width) * longint(screen.width) DIV ScreenWidth;
scaleBy (screen.width, ScreenWidth);
font.size := (Width DIV OldFormWwidth) * font.size;
end;
end;

Then, you will want to have something that checks to see that the font sizes are OK.
Before you change the font's size, you would need to ensure the object actually has a
font property by checking the RTTI.  This can be done as follows:

USES TypInfo; {Add this to your USES statement.}
var
i: integer;
begin
for i := componentCount - 1 downto 0 do
with components[i] do
begin
if GetPropInfo(ClassInfo, 'font') <> nil then
font.size := (NewFormWidth DIV OldFormWidth) * font.size;
end;
end;

{This is the long way to do the same thing.}
var
i: integer;
p: PPropInfo;
begin
for i := componentCount - 1 downto 0 do
with components[i] do
begin



p := GetPropInfo(ClassInfo, 'font');
if assigned(p) then
font.size := (NewFormWidth DIV OldFormWidth) * font.size;
end;
end;

Note: not all objects have a FONT property. This should be enough to get you
started. The font size changes are based on changing the font.size of the form. To
notice small font size changes, try using a true type font.

Note: The following are issue to bear in mind when scaling Delphi applications
(forms) on different screen resolutions:

* Decide early on in the form design stage whether you're going to allow the form to
be scaled or not. The advantage of not scaling is that nothing changes at runtime.
The disadvantage of not scaling is that nothing changes at runtime (your form may
be far too small or too large to read on some systems if it is not scaled).

* If you're NOT going to scale the form, set Scaled to False.
* Otherwise, set the Form's Scaled property to True.

* Set AutoScroll to False. AutoScroll = True means 'don't change the form's frame
size at runtime' which doesn't look good when the form's contents do change size.

* Set the form's font to a scaleable TrueType font, like Arial. MS San Serif is an ok
alternate, but remember that it is stilla bitmapped font. Only Arial will give you a font
within a pixel of the desired height. NOTE: If the font used in an application is not
installed on the target computer, then Windows will select an alternative font within
the same font family to use instead. This font may not match the same size of the
original font any may cause problems.

* Set the form's Position property to something other than poDesigned. poDesigned
leaves the form where you left it at design time, which for me always winds up way off
to the left on my 1280x1024 screen - and completely off the 640x480 screen.

* Don't crowd controls on the form - leave at least 4 pixels between controls, so that
a one pixel change in border locations (due to scaling) won't show up as ugly
overlapping controls.

* For single line labels that are alLeft or alRight aligned, set AutoSize to True.
Otherwise, set AutoSize to False.

* Make sure there is enough blank space in a label component to allow for font width
changes - a blank space that is 25% of the length of the current string display length is



a little too  much, but safe. (You'll need at least 30% expansion space for string labels
if you plan to translate your app into other languages) If AutoSize is False, make
sure you actually set the label width appropriately. If AutoSize is True, make sure
there is enough room for the label to grow on its own.

* In multi-line, word-wrapped labels, leave at least one line of blank space at the
bottom. You'll need this to catch the overflow when the text wraps differently when
the font width changes with scaling. Don't assume that because you're using large
fonts, you don't have to allow for text overflow - somebody else's large fonts may be
larger than yours!

* Be careful about opening a project in the IDE at different resolutions. The form's
PixelsPerinch property will be modified as soon as the form is opened, and will be
saved to the DFM if you save the project. It's best to test the app by running it
standalone, and edit the form at only one resolution. Editing at varying resolutions and
font sizes invites component drift and sizing problems.

* Speaking of component drift, don't rescale a form multiple times, at design time or
aruntime. Each rescaling introduces roundoff errors which accumulate very quickly
since coordinates are strictly integral. As fractional amounts are truncated off
control's origins and sizes with each successive rescaling, the controls will appear to
creep northwest and get smaller. If you want to allow your users to rescale the form
any number of times, start with a freshly loaded/created form before each scaling,
so that scaling errors do not accumulate.

* Don't change the PixelsPerlinch property of the form, period.

* In general, it is not necessary to design forms at any particular resolution, but it is
crucial that you review their appearance at 640x480 with small fonts and large, and at
a high-resolution with small fonts and large before releasing your app. This should
be part of your regular system compatibility testing checklist.

* Pay close attention to any components that are essentially  single-line TMemos -
things like TDBLookupCombo. The Windows multi-line edit control always shows
only whole lines of text - if the control is too short for its font, a TMemo will show
nothing at all (a TEdit will show clipped text). For such components, it's better to
make them a few pixels too large than to be one pixel too small and show not text at
all.

* Keep in mind that all scaling is proportional to the difference in the font height
between runtime and design time, NOT the pixel resolution or screen size.
Remember also that the origins of your controls will be changed when the form is
scaled - you can't very well make components bigger without also moving them over
a bit.



Form Design Help

Displaying a form as being the same size even when the Screen Resolution varies.
How can | restore a window to its last state when | run it again?

What is the order of event handlers when a form is created and shown?

Iconizing an application and keeping it that way.

Hiding the caption bar

How do | set the WindowState to wsMinimized when | minimize a form?

How do | move one image across a background image?

How do | use a form several times?

How do | use a case statement to determine which object calls the procedure?
How do | do screen updates all at once (without a ripple effect).

How do I initialte a DDE link to the program manager to create a new group?

| want to know how | can make a variable that is a "pointer" to Canvas.Font.

How do | use one of the cursor files in the c:\delphi\images\cursors?

How can | tell if the right mouse button was pressed?

How do I trap for right mouse clicks on my VBX and have a popup menu display?
How do | create a floating palette window?

How do | close the help file when | close the application?

How do | display a JPEG or PCX file?

How do | put a repeating bitmap on the background of an MDI main form?
Where is the best place to open a splash screen on program start up?
GetMinMax

How do | do something on the form's OnActivate method?

How do | paint the background of my form with a bitmap?

How can | have an animated icon (when the form is minimized)?

How do | make it so that only the form | select comes to the top? (i.e. without the main
form)

How can | trap for my own hotkeys?

How do | paint with a cross-hatched brush?

How do | put the current time on the title bar of my form?
How do | place the mouse anywhere on the form that | want?

How do | size a form to fit a bitmap?

How can | change the form as text? (DFM -> TXT -> DFM)

How can | reference a form by its name (e.qg. SomeForm.DoSomething) with SomeForm
as a variable?




When doing date math on calculated fields, it is important to ensure that all values being
used are properly matched as to type. The double method (not in the docs) casts the
value to a useable type.

In the following method, d1, and d2 (part of table1) can be of either date or dateTime
type. d3is an integer field.

procedure TForml.TablelCalcFields (DataSet: TDataset);

var
tl, t2: tDateTime;
begin
tableldl.asDateTime := Date + 2; {or tableldl.value := date + 2;}
tableld2.asDateTime := Date - 2;
tl := tableldl.asDateTime;
t2 := tableld2.asDateTime;
tableld3.asInteger := trunc(double(tl) - double(t2));

end;



Database Help

Topics:
general

paradox
dBASE

other:
IDAPI calls
ODBC

s



isDigit

function isDigit(ch: char): boolean;

begin
if ch in ['0"..'9"] then
isDigit := true
else
isDigit := false;

end;



Stuff

This function will remove one part of a string and replace it with another.

function stuff( ToString: string;
FirstByte, NumOfBytes: integer;
FromString: string ): string;
begin
delete(toString, FirstByte, NumOfBytes);
insert (FromString, ToString, FirstByte);
stuff := ToString;
end;



StrStr

Find one string in another. StrStr is the "C" function name. The dBASE equivalent is
at().

function StrStr(LookHere, FindThis: string): integer;
var
p: PChar;
s1, s2: array[0..255] of Char;
begin
StrPCopy(s1, LookHere);
StrPCopy(s2, FindThis);
p := StrPos(s1, s2);
StrStr:=(p-s1) + 1;
end;



IsUpper

function isUpper(ch: char): boolean;
begin
if ch in ['A'.."Z"] then
isUpper := true
else
isUpper := false;
end,



IsLower

function isLower (ch: char):

begin
if ch in ['a'..'z'] then
isLower := true
else
isLower := false;

end;

boolean;



ToUpper

function toUpper (ch: char): char;
begin
toUpper := chr (ord(ch) and S$DF);

end;



ToLower

function toLower (ch: char): char;
begin
toLower := chr (ord(ch) or $20);

end;



upper

function Upper(s: string): string;
var
i: integer;
begin
for i := 1 to length(s) do
if isLower(s[i]) then s[i] := toUpper(s[i]):
Upper := s;

end;



lower

function Lower(s: string): string;
var
i: integer;
begin
for i := 1 to length(s) do
if isUpper(s[i]) then s[i] := toLower(s([i]):
Lower := s;

end;



proper

function Proper(s: string): string;
var

i: integer;

CapitalizeNetLetter: boolean;

begin

s := Lower(s);

CapitalizeNetLetter := true;

i :=1;

repeat
if CapitalizeNetLetter then if isLower(s[i]) then

s[i] := toUpper(sl[i]);

if s[i] = ' ' then CapitalizeNetLetter := true
else CapitalizeNetLetter := false;
i =1+ 1;

until i > length(s);

Proper := s;

end;



String Help

IntToHexStr
HexStrTolnt
IntToBinaryStr
isDigit
isUpper
isLower
toUpper
tolLower
upper

How do | format Numbers (adding commas to a longint)?

Is there a way to use a Pascal string as a null terminated string?

How do | manipulate a TStringlList in a DLL?

How can | parse a PChar?

How do | do a BreakApart()?

How do | do a search and replace in a string?

How can | get the command line parameters?

How can | determine the length in pixels of a string after a specific font has been applied
to it?

How do | determine if two strings sound alike?

How do | store dates beyond the year 20007
How do | find one string inside another with wildcards?

How do | pad a numeric string with zeros?
What are the values for the virtual keys?




Q: How do | keep the form in icon form when | run it? In the private section of the
form object's declaration, put:

A:

PROCEDURE WMQueryOpen (VAR Msg : TWMQueryOpen); message WM QUERYOPEN;
In the implementation section, put this method:

PROCEDURE TForml.WMQueryOpen (VAR Msg : TWMQueryOpen) ;

begin

Msg.Result := 0;
end;

That's it! The form will always remain iconic. OBTW, of course you must set
WindowState to wsMinimized in the form's properties initially.



"CII help

Type conversions

Static variables in Pascal

What is the Object Pascal equivalent of C's "union" reserved word?
How do | do pointer arithmetic in Delphi?

How do | translate this 'C' delaration to ObjectPascal?

How can | emulate the "C" function: StrTok()?




C to Pascal

C type Pascal type

unsigned char byte

char char

char name[arSize] array [0..arSize - 1] of Char
int integer

unsigned int word

long longint

unsigned long longint

float single

double double

char far * PChar

char * PChar if large memory model, Word in small and medium
SomeType far * Var aName: SomeType

or PSomeType (type PSomeType = “SomeType) if you
need the option to pass Nil as a value

struct record
union record with variants
enum enumerated type with compiler switch $Z+ set

(default is $7Z-!)

Q: If the argument of a C function is of type float, how should it be declared in Pascal:
real, single or double?

A: Guaranteed "real" is NOT the answer. The Real data type is a 6-byte floating point
number that's completely specific to Borland Pascal. Single and Double correspond
precisely to the IEEE standard 4-byte and 8-byte floating point types. There's also an
Extended type which is the 10-byte floating point format used internally by the numeric
co-processor. A"C" float is a Pascal SINGLE! The double type is called double in C,
too.

type Plong = “longint;

function foo
( argl : Plong; arg2: Pchar; arg3, arg4, arg5, arg6 : double ) : longint;

This was translated from the following C declaration:

long foo( long FAR * argl,
char FAR * arg2
float arg3,
float arg4,
float argb,
float arg6 );

In general, when an argument in a C function contains "FAR *" and it's NOT a pointer-
to-char, instead of making the corresponding Pascal argument a pointer, you simply
make it a VAR parameter. So your function header would begin:



function foo (VAR argl : Long;

Q (follow up): Since Foo *returns* a pointer, should arg1, the longint pointer, be
declared as a variable parameter in the declaration of Foo?

A: If this weird foo function returns a pointer to its first arguement, you can do it
like this:
FUNCTION Foo (VAR bar : LongInt; ...) : PLonglnt;
BEGIN
Foo := (@bar;
END;

... or you can do it like this:

FUNCTION Foo (bar : PLongInt; ...) : PLongInt;
BEGIN

Foo := Bar;
END;

In the latter case, you'll have to dereference Bar every time you use it in the
function. The former is probably easier on YOU. If the implementation of the function is
in a DLL written by others and it does a lot more than return the pointer, the second
option may be the only one open to you.



Static vars in Pascal

While there are no static data members but there are static methods. The workaround
for the former is to use a "typed constant" which is the Pascal equivalent of a C static
and is declared thus:

const
MyStaticInt : integer = 12345 ;

It cannot be declared as part of a class but it can be local to a proc/fn/method and will
retain it's value between calls in true static fashion.



Hex to Decimal

Q: | want to write a simple application that converts numbers from hex to decimal. My
form has two edit boxes, one for the decimal number and another for the hex number. |
add some code to each edit box's OnChange handler and as | type in one, the other
updates in real time. The problem | am wondering about, is this. The OnChange for one,
changes the edit box text in the other, firing the OnChange in that one, which in turn
updates the other and fires its OnChange and so on ad infinitum.

A: One solution would be to do nothing in the OnChange event handler unless
ActiveControl is equal to the control that is calling the event handler.

procedure TForml.Edit2Change (Sender: TObject);

begin
if ActiveControl = Edit2 then
Editl.Text := IntToHex (StrTolInt (Edit2.Text),0);
end;

procedure TForml.EditlChange (Sender: TObject);

begin
if ActiveControl = Editl then
Edit2.Text := IntToStr (StrTolInt ('$'+Editl.Text)):;
end;

Options: Instead of OnChange. Use OnKeyDown. This way 1 Keydown equates to 1
loop as you intend.



Caption bar Hiding

Q: I'm looking for a way to hide the Caption (or Title) bar of my application. | want to
have a Sizable Window with no Caption Bar. s this possible?

A: You might try this method connected to onCreate event:

procedure TForml.FormCreate (Sender: TObject);
begin
SetWindowLong (Handle, GWL STYLE, GetWindowLong (Handle,GWL STYLE) AND NOT
WS CAPTION )
ClientHeight := Height;
end;



Porting Apps Help

Keeping streams and collections



Streams and collections

Q: | have 2 heavily used BP?7 libraries to migrate to Delphi. Both use a lot of collections
& Streams. I'm probably not alone in this situation. Can we mix Objects & classes in the
same application? If not, I'm ready to dump Streams, but can collections be saved???

Is there any way of saving that code without a major rewrite?

(I tried to USES OBJECT but I'm getting all sorts of compiler complaints...)

A: Yes, it's actually pretty straightforward - | have a lot of code that does that. | have
Objects as the first item in my "uses" statement. You DO need to tell Delphi where to

find the OWL run-time library source (\delphi\source\rtl70, | think). Then, you just do
either

anObject := new (PMyObject, init);

for old-style or

anObject := TMyObject.create;

for new-style objects. Make sure you don't mix up which is which though, or you'll get
compiler "invalid variable reference" messages (which sometimes confuse me if I've

accidentally treated an old-style object like a VCL one, or vice versa).

In fact | prefer the old streaming in many ways. As far as | can see, you need to
descend an object from TComponent in order to get automatic streaming in VCL.



Topics

General programming
DLL

File Handling

Windows system housekeeping
memory management and arrays

Printing

String Manipulation
"C" and Pascal
Porting apps from TP

Command line
How do | get everything on the command line?
How can | get the command line parameters?

Other

Using Crystal Reports, how do | let the user select a printer at run-time?




Multi-tasking

This function should be called occasionally whenever your app does something that
seizes the CPU, like a long disk copy or a large loop. This will allow for pseudo multi-
tasking (Windows style) to take place.

The easiest way is application.ProcessMessages. If you wantto do it by hand, here it
is:

Note: A delay function won't do quite the same thing.

function Yield: Boolean;
var
msg: TMsg;
begin
while PeekMessage (msg, 0, 0, 0, PM REMOVE) do
begin
if msg.message = WM QUIT then
begin
PostQuitMessage (msg.wParam) ;
Yield := TRUE;
EXIT
end
else
begin
TranslateMessage (msqg) ;
DispatchMessage (msqg)
end
end;
Yield := FALSE
end;



Formatting Numbers

This function will add commas to a longint.

function FormatNumber (l: longint): string;
var

len, count: integer;

s: string;

begin
str(l, s);
len := length(s);
for count := ((len - 1) div 3) downto 1 do
begin
insert(',', s, len - (count * 3) + 1);
len := len + 1;
end;
FormatNumber := s;
end;

And if you are using Delphi, there is, of course, the easy way:

function FormatNumber (l: longint): string;
begin
FormatNumber := FormatFloat ('#,##0', StrToFloat (IntToStr(l)));

end;



Hi/Lo order byte

How do you extract the high or low order byte from a word? How do you insert it?
There are built in methods hi() and lo() for extracting, but for those that want to know
how to do it on their own, here it is in its most efficient form (if | do say so myself <G>).

The functions for inserting bytes are not in Delphi.

the contents of the AX register.

function GetHiByte (w:
asm

mov ax, w

shr ax, 8
end;

word) :

function GetLoByte (w:
asm

mov ax, w
end;

word) :

function SetHiByte (b:
asm

XOr ax, ax

mov ax, w

mov ah, Db
end;

byte; w:

function SetLoByte (b:
asm

XOor ax, ax

mov ax, w

mov al, b
end;

byte; w:

Another way of doing it:
compiler do the work for you)???

Type
TWord2Byte = record
Lo,Hi: Byte;
end;
var W: Word;
B: Byte;
begin
W := $1234;
B := TWord2Byte (W) .Hi;
writeln (TWord2Byte (W) .Hi) ;
{ going back }
TWord2Byte (W) .Lo := $67;
TWord2Byte (W) .Hi := $98;

end.

byte;

byte;

{ no shl

word) : word;

word) : word;

needed!

Note: Assembler functions return

assembler;

assembler;

assembler;

assembler;

How about REAL FAST, without using assembler (i.e. let the

}






Dynamic objects

This will place a TImage object on the form and fill it with a picture.

uses ExtCtrls;
procedure TForml.ButtonlClick (Sender: TObject);
var

ti: tImage;

begin

ti := tImage.create(self);
with ti do
begin

parent := self;

autosize := true;

Picture.LoadFromFile ('c:\windows\MyBmp.bmp') ;
show;

end;

end;

To make it always fit the window, do it this way:

with ti do

begin
align := alClient;
stretch := true;
autosize := true;

end;



Navigator button check

Is there any way to determine if a particular button on a TDBNavigator
control is enabled? (Buttons is a protected property.)

<Warning: slimy hack alert!>

type TDBNavCracker = class (TDBnavigator);

if TDBNavCracker (DBNavigatorl) .Buttons[nbEdit].Enabled then {};



Dynamic assigning at runtime

Q: Is there an easy way to assign speedbutton properties via iteration at runtime? (The
Speedbutton properties in my application are very dynamic.) Thatis | don't want to
have to do the following for every speedbutton property that changes:

Toolbar.Speedbuttonl.Glyph := GetGlyph(1l);
Toolbar.Speedbutton2.Glyph := GetGlyph(2);

But rather something that like

For I := 1 to NumSpeedButtons do
Toolbar.Speedbutton[I].Glyph := GetGlyph(I);

A: This code fragment might put you on the right track. It iterates through all the
components on the form. | suppose you could use the Tag property to control which
Glyph is which in your GetGlyph function.

for T := 0 to ComponentCount-1 do
if Components[I] is TSpeedbutton then
TSpeedButton (Components[I]) .Glyph := GetGlyph():;

Another option is to build your own array just for SpeedButtons (much like TForm builds
it for all components).



Q: Is there a way | can generically respond to all Speedbutton clicks?

{ Not this. }
procedure TToolbar.SpeedButtonOClick (Sender: TObject);
begin
SpeedButtonAction (0) ;
end;

{ More like this. }
procedure TToolbar.AnySpeedButtonClick (Sender:TObject, ButtonNo:byte);
begin
SpeedButtonAction (ButtonNo) ;
end;

A: Set all the OnClick events to point to the following method, and assign the
appropiate value to the Tag properties of the SpeedButtons.

procedure TForml.AnySpeedButtonClick (Sender:TObject)
begin

SpeedButtonAction ((Sender as TSpeedButton) .Taqg);
end;

Note: If your speed buttons do indeed have names SpeedButton1, SpeedButton2, etc.,
you can use the form's FindComponent method to pretend they're an array:

FOR N := 1 TO NumButtons DO
WITH FindComponent ('SpeedButton'+Str (N)) AS TSpeedButton DO { whatever } ;



Linking with OBJ files

Q: | have an OBJ file that has several assembler routines compiled into it.

want to have to rewrite them. Is there a way to use them in a Delphi app?

A: You don't indicate if these return values or not. In Pascal this matters.

If they don't, include the following near the front of your code:

Procedure TurnOn; External;
Procedure TurnOff; External;

If they return values, use:

Function TurnOn: Integer; External;
Function TurnOff: Integer; External;

Replace Integer with whatever datatype they return.

In either case follow that with:

{$L filename.obj}

to link in the obj file.

| wouldn't



1. Remove "device=w31s.386" from the 386enhanced section of system.ini.

2. There are problems with w32sys.dll, win32s16.dll, win32s.ini, etc. files in \windows\
system that you can remove. Also, windows\system\win32s should be removed. (ltis
a general 32 bit windows problem.)

3. Ifthereis an "Error... Could not find object" message before the GPF, recopy the
IDAPI.CFG from the cd-rom. It could be corrupt.



IDAPI specs

TITLE : Here are the CURRENT maximum limits for some common IDAPI
objects. These may change for next release.

48 // Max clients in system

32 // Max sesssions per client

32 // Max open databases per session

32 // Max loaded drivers

64 // Max sessions in system

4000 // Max cursors per session

100 // Max passwords per session

16 // Max entries in error stack

127 // Max locks of a given type on a given table

BLOB handles per cursor:
Paradox: max (16, two times the number of BLOB fields in the table)
dBASE: Two times the number of BLOB field in the table



Simple windows program

This is a simple program to show how a windows program is written from scratch in BP
(with no OWL). There is also an example of this in \delphi\demos\generic.

{Lloyd Linklater; 2-6-95}
{c:\bp\examples\win\generic.pas has much of this in it.}
program WinClk;
{SR sumthing} {Resource file is sumthing.res}
uses WinTypes, WinProcs;
const

AppName = 'WinClk';

{****************************}

{The export is used to force the far call model and to generate
special entry code so that it can be called by Windows.}

function About (Dialog: HWnd; Message, WParam: Word;
LParam: Longint): Bool; export;
begin
About := True;
case Message of
wm_InitDialog: Exit;
wm_Command: if (WParam = id Ok) or (WParam = id Cancel) then
begin
EndDialog(Dialog, 1);
Exit;
end;
end;
About := False;
end; {About}

{****************************}

function WindowProc (Window: HWnd; Message, WParam: Word;

LParam: Longint): Longint; export;
var
AboutProc: TFarProc;
begin
WindowProc := 0;

case Message of
{The WM COMMAND message is sent to a window when the user selects
an item from a menu, when a control sends a notification
message to its parent window, or when an accelerator keystroke
is translated. }
wm_Command: case WParam of
301 : {Help | About selected from the menu.}
begin
AboutProc := MakeProcInstance (@About, HInstance);
DialogBox (HInstance, 'AboutBox', Window, AboutProc);
FreeProcInstance (AboutProc) ;
Exit;
end;
101 : {EXIT selected from the menu.}
begin
PostQuitMessage (0); {Puts a wm Quit message on the queue.}



halt;
end;
end;
wm_Destroy:
begin
PostQuitMessage (0) ;
Exit;
end;
end; {case Message}
WindowProc := DefWindowProc (Window, Message, WParam, LParam);
end; {WindowProc}

{****************************}

{This MUST be called WinMain.}

procedure WinMain;
var
Window: HWnd;
Message: TMsg;

const
WindowClass: TWndClass = (
style: 0;
lpfnWndProc: @WindowProc; {Function pointer to the message handling
code.}
cbClsExtra: 0;
cbWndExtra: 0;
hInstance: 0;
hIcon: 0;
hCursor: 0;
hbrBackground: 0;
lpszMenuName: 'MyFirst';
lpszClassName: AppName) ;
begin
if HPrevInst = 0 then {If there is not another copy running then...}
begin {...a window class must be declared since it is not declared already.}
WindowClass.hInstance := HInstance;
WindowClass.hIcon := LoadIcon (hInstance, 'ICON 1');
WindowClass.hCursor := LoadCursor (0, idc_Arrow);
WindowClass.hbrBackground := GetStockObject (white Brush);
if not RegisterClass (WindowClass) then Halt (255);
end;
Window := CreateWindow (AppName, {Class name}
'Windoze Clock', {Window name}
ws_OverlappedWindow, {style}
cw_UseDefault, {X}
cw_UseDefault, {Y}
cw_UseDefault, {Width}
cw_UseDefault, {Height}
0, {WndParent}
0, {Menu}
HInstance, {Instance}
nil); {structure creation parameter}

{CmdShow is used only when ShowWindow is used to display the
app's main window. Otherwise it uses one of the sw_ constants.}
ShowWindow (Window, CmdShow) ;

UpdateWindow (Window) ;



{Messages are not sent directly to the app by windows, so we must use
the OBLIGATORY message loop to keep getting messages and using them
until we get the 'go away now' message. If the message is WM QUIT, then
GetMessage () returns a 0. Message is of type TMsg.
TMsg = record
hwnd: HWnd;
message: Word;
wParam: Word;
lParam: LongInt;
time: Longint;
pt: TPoint;
end; }
while GetMessage (Message, 0, 0, 0) do
begin
{This translates virtual-key messages into character messages.}
TranslateMessage (Message) ;
DispatchMessage (Message); {The translated message is now 'mailed' out.}
end;
Halt (Message.wParam) ;
end; {WinMain}

{****************************}
begin

WinMain; {By this time it is simple <G>}
end.



Enter as Tab

Q: How do | make it so that when the user hits <enter>, it goes to the next object as
though he had hit the tab key?

A: You need to trap the keystroke and set up your own response to it. Try this:

procedure TMainForm.FormCreate (Sender: TObject);
begin

keyPreview := true; {To turn the event "ON".}
end;

procedure TMainForm.FormKeyPress (Sender: TObject; wvar Key: Char);
begin
if Key = #13 then

begin
Key := #0;
PostMessage (Handle, WM NEXTDLGCTL, O, 0);{next control}
{PostMessage (Handle, WM NextDLGCTL, 1, 0);} {previous control}
end;
end;

Here is some info from compu-serve (FWIW)

<<| am trying to override the default behavior of the left & right arrow keys in a dbgrid.
am using the OnKeyDown event of DBgrid.  Overriding the right arrow as follows
works fine, but trying to override the left arrow with Shift-Tab doesn't:>>

| haven't tried to mess around with the left and right arrow keys, so the following may
not work. Note that | have this implemented at the form level, with the key preview (I
think that's what its called) property set to true.

Basic answer however, is that you have to us the key up procedure when you access
shift, control, and alt. Look in help under on key up. It will explain much better than |
can. | use the following to emulate, at least in part, the same type keystrokes as in
pdoxwin. | haven't implemented the page down and page up yet. Hope this helps

procedure TFreightRateForm.FormKeyUp (Sender: TObject; var Key: Word; Shift:
TShiftState);
Begin
if (Key = VK F9) and not((shift=[ssalt]) or (shift=[ssshift])
or (shift=[ssctrl])) then
case FreightTbl.State of
dsEdit : FreightTbl.Post;
dsInsert : FreightTbl.Post ;

else
FreightTbl.edit;
end ;
if ((shift = [ssAlt]) and (Key = VK BACK)) then

FreightTbl.Cancel;
if (Key = VK Insert) then



if FreightTbl.State = dsEdit then
FreightTbl.Insert;
end;

Here is some more information on this subject:

This code also includes the processing of the <Enter> key for the entire application -
including fields, etc. The grid part is handled in the ELSE portion of the code. The
provided code does not mimic the behavior of the <Tab> key stepping down to the next
record when it reaches the last column in the grid - it moves back to the first column - .

procedure TForml.FormKeyPress (Sender: TObject; wvar Key: Char);

{ This is the event handler for the FORM's OnKeyPress event! }
{ You should also set the Form's KeyPreview property to True }
begin
if Key = #13 then
if not (ActiveControl is TDBGrid) then begin

if it's an enter key }
if not on a TDBGrid }

N

Key := #0; eat enter key }
Perform (WM NEXTDLGCTL, 0, 0); move to next control }
end
else 1f (ActiveControl is TDBGrid) then { if it is a TDBGrid }
with TDBGrid (ActiveControl) do
if selectedindex < (fieldcount -1) then { increment the field }
selectedindex := selectedindex +1
else
selectedindex := 0;

end;



Filling an outline from a table

Here is how to fill an outline component from a table. It has been written so that the
name, address, etc appears as a branch from the root company name.

procedure TForml.ButtonlClick (Sender: TObject):;
var
t: TTable;
indx, FieldCounter: integer;
begin
t := TTable.create (self);
with t do
begin
DatabaseName := 'pw'; {personal alias}
TableName := 'customer.db';
open;
first; {probably redundant}
while not eof do

begin
indx := outlinel.add(0, fields[1l].AsString);
for FieldCounter := 2 to 7 do
outlinel.addChild (indx, fields[FieldCounter].AsString);
next;
end; {end of the while statement}
close;

end; { End of the with statement. }
end; {end of the procedure}



filling a listbox from a table
Here is how to do it when the field is not a string: (In this case, it is a date field.)

var
QDate: TTable;
listboxl.Clear;
QDate := TTable.create (application);
with QDate do begin
try
databasename := 'DBDEMOS';
TableName := 'orders.db';
open;
First;
Repeat
listboxl.Items.Add (FieldByName ('SaleDate') .AsString);
Next;
until EOF;
Close;
finally
free;
end;
end;
end;

Here's one way of populating a list box with your fields ID and Name:

with MyQuery do
begin
{ this is to prevent flicker in any controls using this dataset }
DisableControls;

try
First;
while not EOF do
begin

{ Here's the actual statement you asked for... }
with MyListBox.Items do
Objects|[ Add( FieldByName ('Name') .AsString ) ] :=
TObject ( PChar( FieldByName ('ID') .AsInteger ) );

Next;
end;
finally
EnableControls;
end;
end;

And here's how you can extract the ID from the currently selected item in the listbox:

with MyListBox do



MyInteger := Longint( Items.Objects[ ItemIndex ] );



This error indicates that SHARE.EXE (or VSHARE.386) wasn't loaded.



bitmap pasting

Q: When | paste a glyph/BMP with white in it into a button, the white disappears. The
glyph/BMP appears just fine if | paste into into a button in Paradox. What gives?

A: Delphi selects whatever color is in the lower left corner of your bitmap as the
transparent color for the button as it rests on the button. If the problem is that you
_want_ the white to appear in the BitBtns in Delphi, then edit the bitmaps so that the
lower left corner bit is a color that appears nowhere else in the bitmap. (That yucky
olive color works -- who uses that? <g>)



Navigator control use

Q: | have a form that uses several TDBGrids. It has only one navigator control. How
do | write it so that | can use the navigator control so that it works with whatever grid is

active?
A: Use this line in the Enter event of each grid:

TDBNavigatorl.dataSource := (sender as TDBGrid) .dataSource;



TListBox with tabs

Q: Do you have to do anything special to get tabs to be expanded in a listbox? | am
just getting little line characters instead of tabs.

A: Yes. The default behavior of a listbox will not show tabs, but you can 'roll your own'
by inheriting TListbox and going from there. You need to OR Ibs_UseTabStops into the
window style in the create params.

see: TListbox (with tabs)



sound
Q: How do | make sound the way that it worked in BP77?
A: Here is some code, that makes the sound of Turbo Pascal:

Note: This code is untried and contains elements that must be adjusted for Delphi.

{This should be re-written using TTimer.}
Function Waiting(ms: LongInt): BOOLEAN;
VAR
TickCount: LongInt;
Begin
Waiting:= false;
TickCount:= GetTickCount;
While GetTickCount - TickCount < ms do yield; {see multi-tasking}
Waiting:= true;
End;

{Works.}
Procedure NoSound;
Begin
port[$61]:= port[$61] and S$FC;
End;

{Works, but just plays one tone.}
Function Sound(freq, dauer: Word): BOOLEAN;
VAR
b: byte;
Begin
if freqg > 18 then begin
freqg:= word (1193181 div longint (freq)):;
b:= port[$61];
if (b and 3)=0 then

begin
port[$61]:= b or 3;
port[$43]:= $b6;
end;
port[$42]:= byte(freq);
port[$42]:= byte(freq shr 8);
end;
Waiting (dauer) ;
NoSound;

End;



Memory Model
Q: Which memory model does Delphi use?
A: Delphi uses a mixed memory model. The defaults are:

- Methods are far

- Procedures in an interface section are far

- Procedures only used in an implementation section are near

- Heap data and all pointers in general (including class instances)
are far

- Global variables are near (DS based)

- Procedure parameters and local variables are near (SS based)

- Procedures declared FAR or EXPORT are far

- Virtual memory tables are far for the new class model and near for
the old

This scheme has been used by Borland Pascal for a very long time. | find it flexible and
efficient.

Since all public procedures, methods and pointers are 32bit already, Delphi32 won't
have to change any of that. It's likely that Delphi32 will switch to 32bit addressing for
the data and stack segments too, but that shouldn't affect any of your code either.
What will affect it is the change of Integer from 16 to 32 bit.



Linking tables with queries

Q: How do | link tables with queries?

A: If the master table is also a query you can use this code for it:
select * from customer

The detail table has a couple of things to do. First, you need a couple lines of code.

select * from orders
where custNo = :custNo

The :custno part will refer back to whatever the dataSource points to. It should be
pointing to the dataSource that points to the master table. In this way, the values are
passed in as a parameter.



message handling

Q: If a component doesn't relay the message, do | have to write my own version that
passes the messages that | need, or is there way to tap (from a TForm or else where)
into the message loop, and grap what | need?

A: To respond to, say, the wm_paint message, you would add --

procedure WMPaint (var Message: TWMPaint); message WM PAINT;

to your component. The you could have

procedure TWhateverComponent.WMPaint (var Message: TWMPaint);
begin

{have your way with the component}
end;

This will work for any windows message. Most components respond to the more
popular messages already, and you can override their event handlers.



Dialing a phone

Dialer is a small non visual component which allows you to dial phone numbers from
your Delphi applications. | am not a great expert in communications but it works fine
for my modem. You can modify it as much as you wish.

Dialer has four published properties, which will appear in you Object Inspector.

ComPort - Set a communication port of your modem (dpCom1..dpCom4);
Confirm - true if you wish dialer to ask you if you are sure to dial the number;
Method - Dialing method - Pulse or Tone

NumberToDial - string, which contains Phone Number you wish to dial e.g. '911":)
You can set these properties from Object Inspector or during the run-time.
There is one public procedure: Execute

After you add an icon representing dialer, you can use TButton component to run it. e.g.

procedure TForml.ButtonlClick(Sender: TObject);
begin

Dialerl.Execute;
end;

You can create the Dialer component "On Fly", without adding its icon to your form:

procedure TForml.ButtonlClick (Sender: TObject);
var
TempDialer : TDialer;
begin
TempDialer:=TDialer.Create (Self);
with TempDialer do
begin
ComPort :=dpCom4;
Confirm:=true;
Method:=dmTone;
NumberToDial:="'1(222)333-4444";
Execute;
Free;
end;
end;

In this case don't forget to add to your uses statement Dialer unit.

To install this control in you VCL place it in your C\DELPHI\LIB directory and from IDE
Options Menu select Install Components. In the Install Components dialog box click Add
Button, then in Add Module box type C:\DELPHI\LIB\DIALER.PAS, click OK, then in the
Install Components Dialog box click OK again and wait a while. Dialer icon will appear
in the Samples section of your Components Palette.



unit Dialer;

Classes, Graphics,

interface
uses
SysUtils, WinTypes, WinProcs, Messages,
Forms, Dialogs;
type
TComPort = (dpCOM1l,dpCOM2,dpCOM3, dpCOM4) ;
TMethod = (dmTone,dmPulse);
TDialer = class (TComponent)
private
{ Private declarations }
FComPort TComPort;
FNumberToDial string;
FConfirm boolean;
FMethod TMethod;
protected
{ Protected declarations }
public

{ Public declarations }
procedure Execute;

published
property ComPort TComPort read FComPort
write FComPort;
property Confirm boolean read FConfirm
write FConfirm;
property Method TMethod read FMethod
write FMethod;

property NumberToDial

string read FNumberToDial

write FNumberToDial;

{ Published declarations }
end;

procedure Register;
implementation
procedure Register;
begin
RegisterComponents ('Samples’,

end;

procedure TDialer.Execute;
var

s : string;

CId Integer;

Status Integer;

Buf array[l..32] of Char;

begin
if FConfirm then
begin

[TDialer]):;

Controls,



if MessageDlg ('About to dial the number '+FNumberToDial+'. Are you sure?',
mtConfirmation, [mbYes,mbNo], 0)=mrNo then Exit;
end;
{Create a string to send to modem}
s:=Concat ("ATDT', FNumberToDial, "M"J) ;
if FMethod=dmPulse then s[4]:='P';
{Open Com Port}
StrPCopy (@Buf, 'COM ') ;
Buf([4] :=Chr (49+0Ord (FComPort)) ;
CId:=OpenComm (@Buf,512,512);
if CId<0 then

begin
MessageDlg ('Unable to open '+StrPas (@Buf),mtError,
[mbOk], 0);
Exit;
end;

{Send phone number to modem}

StrPCopy (@Buf, s) ;
Status:=WriteComm (CId, @Buf, StrLen (QBuf)) ;
if Status>=0 then

begin
MessageDlg ('Pick up the phone',mtInformation,
[mbOk], 0);
WriteComm (CId, 'ATH'"M"J,5);
end
else
MessageDlg ('Unable to dial number', mtError,
[mbOk], 0);

{Close communication port}
CloseComm (CId) ;
end;

end.



Q: How can | make the active TEdit one color, and every other TEdit a default color?

A: Assign a procedure to the screen.onActiveControlChange event.

unit Killer2;
interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls;

type
TForml = class (TForm)
Editl: TEdit;
Edit2: TEdit;
Edit3: TEdit;
Editd4: TEdit;
Edit5: TEdit;
Edit6: TEdit;
Buttonl: TButton;
procedure FormCreate (Sender: TObject);
procedure DoActiveControl (Sender: TObject);
procedure FormClose (Sender: TObject; var Action: TCloseAction);

private
{ Private declarations }
public
{ Public declarations }
end;
var

Forml: TForml;
OldControl: TComponent;

implementation
{$R *.DFM}

procedure TForml.FormCreate (Sender: TObject);
begin

screen.OnActiveControlChange := DoActiveControl;
end;

procedure TForml.DoActiveControl (Sender: TObject);

begin

{This goes first in case the active control is not a TEdit.}
if assigned(0ldControl) then

begin
(OldControl as TEdit) .color := clWhite;
(OldControl as TEdit) .font.color := clBlack;
end;
if activeControl is TEdit then
begin
(activeControl as TEdit) .color := clNavy;
(activeControl as TEdit) .font.color := clYellow;

OldControl := activeControl as TEdit;



end;
end;

procedure TForml.FormClose (Sender: TObject; wvar Action: TCloseAction);
begin

screen.OnActiveControlChange := nil; {prevents a GPFault}
end;

end.



binary files
Q: How do | read and write binary files?

A: If the data can be stored in its binary form, it's as simple in Delphi as it was in BP7:

type
TUserNotes = record
TimeStored : TDateTime;
Comment : string[20];

TaxCost : real;

NetCost : real;

Altered : Boolean;
end;

TUserNotesFile = file of TUserNotes;
var
UserNotes : TUserNotes;
F: TUserNotesFile;
begin
System.Assign (F, '"MYDATA.DAT') ;
Rewrite (F) ;
{ £f1i1l1l in the fields of "UserNotes" }
Write (F,UserNotes) ;
Close (F);
end;

Here is a fuller example:
unit Bing;
interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls;

type
TForml = class (TForm)
Buttonl: TButton;
Button2: TButton;
ListBoxl: TListBox;
procedure ButtonlClick (Sender: TObject):;
procedure Button2Click(Sender: TObject);

private
{ Private declarations }
public
{ Public declarations }
end;
var

Forml: TForml;



implementation

type
TUserNotes = record
TimeStored : TDateTime;
Comment : string([20];
TheCost : real;
end;

TUserNotesFile = file of TUserNotes;
{$R *.DFM}

procedure TForml.ButtonlClick (Sender: TObject);
var

UserNotes : TUserNotes;
F: TUserNotesFile;
begin

System.Assign (F, "MYDATA.DAT') ;
Rewrite (F) ;

with UserNotes do begin

TimeStored := now;

comment := 'Yo, mama!';

TheCost := 123.456;
end;

system.Write (F, UserNotes);
system.Close (F) ;
end;

procedure TForml.Button2Click (Sender: TObject);
var

UserNotes : TUserNotes;

F: TUserNotesFile;
begin

System.Assign (F, '"MYDATA.DAT') ;

Reset (F) ;

system.read (F, UserNotes);

with UserNotes do begin
listboxl.items.add (DateTimeToStr (TimeStored)) ;
listboxl.items.add (comment) ;
listboxl.items.add (FloatToStr (TheCost)) ;

end;

system.Close (F) ;

end;

end.



Q: How do | get a file's date and time stamp?

A:
function GetFileDate (TheFileName: string): string;
var
FHandle: integer;
begin
FHandle := FileOpen (TheFileName, O0);
result := DateTimeToStr (FileDateToDateTime (FileGetDate (FHandle)));

FileClose (FHandle) ;
end;



minimizing

When | minimize a form by clicking the minimize button, the WindowState does NOT get
set to wsMinimized! So | had to work around the problem by setting WindowState like

SO.

procedure TForml.SysMen (var msg:TMessage) ;

begin
if msg.wParam = SC Minimize then
WindowState := wsMinimized; {...or whatever code you want.}
else
Inherited;
end;

Reason: When you select the apps minimize, you are minimizing the TApplication, not
the TMainForm.  TMainForm will be hidden, and TApplications Icon will be shown.



constructors
Q: Can | give a constructor any name?

A: Constructors in C++ do have names. It just so happens that the constructor names
are all the same, and equal to the class name. In Object Pascal, constructors do have
names, and they can be different from the class name. Furthermore, each constructor
must have different name. Typically, constructors in Delphi are called Create. To
invoke a constructor, you just call it. For example,

var
LB : TListBox;

begin
IB := TListBox.Create( ... );

Q: How do | invoke a named constructor?
Q: What are the arguments of a constructor?

A: Anything you want them to be. Of course, if your creating a descendant class and
using virtual constructors, then you don't have much choice in the parameters, they
must be the same as the ancestor.

Q: Why does the example of constructors and destructors for the class
TShape also define TObject.Free?

A: Yes, this is confusing. This is only showing that when an object calls its Free
method, the Destroy destructor eventually gets called. Could use a comment in the
example code <g>.

Q: Are destructors named as well? If so, how do | invoke them?

A: Yes, destructors are named. In Delphi, they are typically called Destroy. As stated
above, whenever you need to destroy an object, it is safer to call the Free method. The
rule is that if you create the object in code, then you are responsible for destroying (i.e.
Freeing) it. If you create a component using the form designer, then the Form handles
destroying the components.



Also relevant information:
How do I close a file that was opened in a DLL (Delphi made) and called from VB?

VB to DLL

Q: How Do | pass the following struct from VB to a Delphi created DLL **by
reference™* would be appreciated (what should the parameters on the Delphi side look
like?). | chose this structure to sort of represent most scenarios (if | can successfully
pass this one, anything should be OK)

Type MyType
Valuel As Double
Value2 As Integer
Value3 As String * 20
Value4 As String

End Type

A: You will have some trouble with Value4. Passing VB strings to/from DLLs takes
special handling. The easiest way to do it is to pass a pre-declared VB string to the DLL
and have the DLL return the length and the resulting string back.

The others are easy.

Valuel As Double -> Valuel : Longint;
Value2 AS Integer -> Value2 : integer;
Value3 As String * 20 -> Value3 : array[0..19] of char;

User defined structures in Pascal are called records.

type
myStructure = record
Valuel : longint;
Value?2 : integer;
Value3 : array [0..19] of char;
end;

| think you could define Value4 as a PChar in Pascal, but when you got it back in VB,
you would have to search it for the ASCII 0 end byte and change the length of your
string to the number of characters before the zero.

If | remeber correctly, from my evaluation 'beta' copy with source code, there were some
functions in the VCL that handle VB strings. Can't say if they are in the shipping version
because | havn't recieved the VCL source yet. A quick search of the online docs don't
reveal them.

Here's some general type conversions from VB to Pascal (in table form; | hope this
formats correctly on CIS.):



VB Declare As

By Val S As String
I As Integer

L As Long

S As Rect

By Val As Integer

By Val As Long
I As Integer
As Any

As Any

VB Call With

Any String or Variant

Any Integer

Any Long

Any Variable of same type
Any Integer

Any Long

the first element of I(0)
Any Variable (By Val when
String)

By Val 0¢&

Translates to Pascal Type

PChar
"Integer (pointer to integer)
“Longint (pointer to longint)

~"TRect (pointer to TRect)
BOOL (word boolean)

Word

Integer

hWwnd

hDC

...and so on;
Longint
~“array of integer

all word types.

Pointer (PChar when string)

nil

Q: This would probably work, but I'd still really like to know how to return a string (even
a null-terminated one) from a DLL function to VB.

A: The problem with returning PChars from DLLs is that the DLL has to be responsible

for cleaning up the memory, but it doesn't know when the caller finishes.

Most people

use the following style, which is NOT bullet proof, but works in most instances:

Var ReturnBuffer

function Dir Get (ACaption, AInitDir,

Begin

Result := StrPCopy (ReturnBuffer,

End;

tArray

[0..255] of Char;

DirText:

PChar )

{ Must be outside function! }

PChar;

'Result Text'):;

The only time you have a problem is when someone calls the function while someone

else is still using the ReturnBuffer.

(Just about guaranteed not to happen, except

maybe under Windows 95, but could under 3.1 if VB doesn't copy the string).



rTrim()

{Supresses trailing blanks}

function RTrim(s: string): string;

begin
while s[length(s)] = "' ' do dec(s[0]);
result := s;

end;



overriding events

| have a form on which | want to place about 40 or 50 images. However, | want to
create these images at run-time and | want to place them on the form at run-time. So
for each of these images, | want to put up a messagebox (or something of that sort)
whenever the user clicks on one of the images. | guess the crux of the matter is that |
want to do all of this at run-time and not a design-time. So, | am confused on how to
override the OnClick event of Timage for my new image type, TMylmage.

TMyImage = class (TImage)

procedure OnClick(Sender: TObject); override; { When I put override here,
it gives me an error }

private

public
end;
procedure TMyImage.OnClick (Sender: TObject); override; {Once again, an error }

And, of course, it doesn't work even if | replace override with virtual or even if | don't put
anything there.



bitmap motion

The basic way to move an image across a background image is this. First, you
create a monochrome bitmap the same size as the moving image, with the black
silhouette of the e.g. airplane against a white background - call this the mask. You also
must create a same-sized bitmap to hold the portion of the background that you'll be
overwriting - call it the storage. Then the process of making one movement of the image
goes like this:

1) copy storage onto background at its old location

2) copy a rectangle from background to storage at new location
3) copy the image to the background using SRCINVERT

4) copy the mask to the background using SRCAND

5) copy the image to the background again using SRCINVERT

Nasty? Well, perhaps, but that's the way it's done. Copying an image with
SRCINVERT XORs the pixels with the background. XOR the same image twice and you
return to the original background. But because we ANDed the mask between the two
XORs, the black part of the mask contains whatever was in the image with no trace of
the background.

Here's the catch. These operations can all be handled using CopyRect, but
there's an impossibly annoying flicker of the entire background image. I'm not a big
graphics dude; | couldn't figure out how to eliminate the flicker. So it seems you'd have
to go down to the metal and use the Windows API function BitBlIt.

Here is an example of using this:

This project animates a 32 x 32 bitmap, defined in "Mymask.bmp" and "Mybmp.bmp",
that replaces the mouse cursor. We could have replaced the cursor itself with a
resource, but replacing the mouse cursor with a sprite allows a demonstration of
animation with minimal logic controlling sprite location.

The demo does have a great deal of flicker. | have not employed screen swapping in
this demo -- the demo is as minimal as | could make it, to demonstrate just the basic
technique.

The bitmap used for this project looks roughly like a blue marble. Two 32 x 32 pixel,

16 color bitmaps were created in the image editor by the following method:

1) Create mask by drawing a black circle and saving in the project directory as
"Mymask.bmp".

2) Copy this bitmap as "MyBMP.bmp".

3) Color the black area as blue and perform any other enhancements on the blue
area (such as a tiny white square in the "marble" upper corner to suggest a shiney
spot).



Noel Rice
Borland Technical Support

unit Animl;
interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs;

type

TForml = class (TForm)
procedure FormCreate (Sender: TObject):;
procedure FormMouseMove (Sender: TObject; Shift: TShiftState; X,
Y: Integer);
procedure FormDestroy (Sender: TObject):;
protected
FStorage: TBitMap;
FMask: TBitMap;
FImage: TBitMap;
FOldRect: TRect;
FNewRect: TRect;
end;

var
Forml: TForml;

implementation
{SR *.DFM}
procedure TForml.FormCreate (Sender: TObject);
begin
FMask := TBitMap.Create;

FMask.LoadFromFile (ExtractFilePath (Application.ExeName) + 'MYMASK.BMP');

FImage := TBitMap.Create;
FImage.LoadFromFile (ExtractFilePath (Application.ExeName) + 'MYBMP.BMP');

FStorage := TBitMap.Create;
FStorage.Width := FImage.Width;
FStorage.Height := FImage.Height;
Screen.Cursor := crNone;

end;

procedure TForml.FormMouseMove (Sender: TObject; Shift: TShiftState; X,
Y: Integer);

const
FirstTime: boolean = True;

begin



{ 1) Restore Forml: copy storage onto Forml at its old location }

if FirstTime then FirstTime := False
else BitBlt (Forml.Canvas.Handle, FOldRect.Left, FOldRect.Top,
FImage.Height,
FStorage.Canvas.Handle, 0, O,
SRCCOPY) ;

{ save old location }
FNewRect Rect (X, Y, X + FImage.Width, Y + FImage.Height);

FOldRect := FNewRect;

FImage.Width,

{ 2) Save copy of Forml: copy a rectangle from Forml to storage

at new location. }

BitBlt (FStorage.Canvas.Handle, 0, 0, FImage.Width, FImage.Height,

Forml.Canvas.Handle, FNewRect.Left, FNewRect.Top,
SRCCOPY) ;

{ 3) copy the image to Forml using SRCINVERT }

BitBlt (Forml.Canvas.Handle, FNewRect.Left, FNewRect.Top, FImage.Width,

FImage.Height,
FImage.Canvas.Handle, 0, O,
SRCINVERT) ;

{ 4) copy the mask to Forml using SRCAND }

BitBlt (Forml.Canvas.Handle, FNewRect.Left, FNewRect.Top, FImage.Width,

FImage.Height,
FMask.Canvas.Handle, 0, O,
SRCAND) ;

{ 5) copy the image to Forml again using SRCINVERT }

BitBlt (Forml.Canvas.Handle, FNewRect.Left, FNewRect.Top, FImage.Width,

FImage.Height,
FImage.Canvas.Handle, 0, O,
SRCINVERT) ;

end;

procedure TForml.FormDestroy (Sender: TObject);
begin

FMask.Free;

FImage.Free;

FStorage.Free;
end;

end.



GetEnvStr

Q: Borland decided that accessing environment variables from Windows Programs is a
Bad Thing. Why do they force you to use the "obsolete" WinDos unit?

A: Actually, using WinDos in a Delphi app is a *bad* thing. Many of the functions that
are in WinDos have been moved to SysUtils. However, the GetEnvVar function didn't
make it. Furthermore, the TDateTime type got moved to the system unit -AND- its
definition changed. Therefore, if you use WinDos in a Delphi application, you will not
be able to use the new Date and Time functions of Delphi. Therefore, to fix this
problem | wrote the following unit which contains a GetEnvStr function.

unit DlphiDos;
interface

function GetEnvStr( VarName : string ) : string;
implementation

uses
WinProcs, SysUtils;

{= GetEnvStr - Get Dos Environment Variable Setting =1}

{= This function is a modified version of the GetEnvVar =}
= function that appears in the WinDos unit that comes

{= with Delphi. This function's interface uses Pascal =}
{= strings instead of null-terminated strings. =}

function GetEnvStr( VarName : string ) : string;
var
Len : Word;
EnvStz : PChar;
NameStz : array[ 0..180 ] of Char;
begin
StrPCopy ( NameStz, VarName ); { Covert VarName to PChar }
Len := StrLen( NameStz );
EnvStz := GetDosEnvironment; { EnvStz holds entire env }

while EnvStz” <> #0 do

begin { Pick off Variable Name and Compare }
if ( StrLIComp( EnvStz, NameStz, Len ) = 0 ) and
( EnvStz[ Len ] = '=' ) then
begin { Convert to Pascal string before returing }
Result := StrPas( EnvStz + Len + 1 );
Exit;
end;
Inc( EnvStz, StrlLen( EnvStz ) + 1 ); { Jump to Next Var }

end;



Result
end;
end.

\l

LY



DLL sample
Without units

First the DLL "framework" that you wanted, save as DLLFRAME.DPR:

library Dllframe;

uses WinTypes;

function GetString : string ; export ;
begin

GetString := 'Hello from the DLL!'
end ;
exports

GetString ;

begin
end.

program Dllcall;

uses
Dialogs;

{$R *.RES}
function GetString : string ; far ; external 'DLLFRAME' ;
begin

MessageDlg ( GetString, mtInformation, [ mbOK ], 0 ) ;
end.

With units

Here's the calling program, save it as DLLCALL.DPR:

program Dllcall;

uses
Dialogs;

{$SR *.RES}

function GetString : string ; far ; external 'DLLFRAME' ;



begin
MessageDlg( GetString, mtInformation, [ mbOK ], 0 ) ;
end.

library Dllframe;
uses DLLUnit;

exports
GetString;

begin
end.

unit DLLUnit;
interface

uses WinTypes;
function GetString: string; export;
implementation
function GetString: string;
begin
GetString := 'Hello from the DLL!' ;

end ;

begin
end.



tStringGrid use

Q: How do | populate a TStringGrid with strings from a file
user editing back to a file?

A:

procedure TForml.ButtonlClick (Sender:
var
F:
S:
I:
begin
AssignFile (F,
Reset (F) ;
I 1;
while not Eof (F)
begin
ReadLn (F, S);
StringGridl.Cells]|[1,
Inc(I);
end;
CloseFile (F);
AssignFile (F,
Reset (F) ;
I 1;
while not Eof (F)
begin
ReadLn (F, S);
StringGridl.Cells|[2,
Inc(I);
end;
CloseFile (F);
end;

TObject) ;

System.Text;
String;
Integer;

'C:\AUTOEXEC.BAT"') ;

do

1] S;

'C:\CONFIG.SYS"');

do

I]

...and save the strings after



| get an error when | do this:

| use the help file example for the ADD method and | get an error message "comma
expected".

| can't run Reportsmith more than 2 or 3 times before it stops running.

| can't open my DBF file because the MDX is missing.

| can only display my ODBC data when it is read only. (PW works OK.)

There is a leak in my GUI resources that comes from TCustomDBGrid.

| get a bitmap pasting error when | do a PasteFromClipboard to a TDBImage.

| get a Capability Not Supported error when passing params in SQL.

| get an "Error creating cursor handle" message.
| use the help file example for the THelpEvent function and | get a type mismatch.

GPF and error messages

GPF in COMPOBJ.DLL while loading.

I'm getting a GPF when my Delphi app calls a function in a DLL that returns a single.
ERROR in Complib.DCL while trying to initialize BDE

Error while compiling: Can't write EXE file. Disk full(?).

Runs in design mode, but not from program manager.

Runtime error 219

error 94 "." expected

Error $2C09

Error 105

Error # Error Message

1 Invalid function number
2 File not found

3 Path not found

4 Too many open files

5 File access denied

6 Invalid file handle

12 Invalid file access code
15 Invalid drive number
16 Cannot remove current directory
17 Cannot rename across drives
100 Disk read error

101  Disk write error

102 File not assigned

103 File not open

104  File not open for input
105 File not open for output
106 Invalid numeric format
200 Division by zero

201 Range check error

202 Stack overflow error



203
204
205
206
207
210
21
212
213
214
215
216

Heap overflow error

Invalid pointer operation
Floating point overflow
Floating point underflow
Invalid floating point operation
Object not initialized

Call to abstract method
Stream registration error
Collection index out of range
Collection overflow error
Arithmetic overflow error
General protection fault

Error # Error Message



TDBGrid field focus

Q: How do | set focus on a specific field on a TDBGrid?

A:
DBGridl.SelectedField := TablelFieldl;
DBGridl.SetFocus;



Password automation

Q: | have a paradox table that uses a password. How do | make it so that the form
that uses the table comes up without prompting the user for the password?

A: The table component's ACTIVE property must be set to FALSE. (If it is active
before you have added the password, you will be prompted.) Then, put this code on
the form's create event:

session.AddPassword ('My secret password');
tablel.active := true;

Once you close the table, you can remove the password with RemovePassword ('My
secret password'), Or you can remove all current passwords with Removeal1Passwords.
(Note: This is for Paradox tables only.)



Q: | have a form that is a sort of template. | want to be able to create and show the
same form several times (with different data in the fields). How do | use the same
form several times?

A: You need to make modeless window by calling create and show for each form
instance, like this:

with TMyForm.create(self) do show;

To demonstrate how to use and control these new forms, here is an example that
changes the caption and name of each form that is created. You have access to it
through the form's component array. This example uses an about box (named "box")
as the other form. Also, there is a variable called "TheFormCount" that keeps track
of how many times the form is instantiated.

procedure TForml.ButtonlClick (Sender: TObject):;

begin
with TBox.create(self) do begin
Name := 'AboutBox ' + intToStr (TheFormCount);
caption := 'About Box # ' + intToStr (TheFormCount) ;
Show;
end;
inc (TheFormCount) ;
end;

These forms can be found and used by their name by means of the FindComponent
method used something like this:

with Forml.FindComponent ('AboutBox ' + IntToStr (Something)) as TForm do
DoSomethingHere;



Screen blanking
Q; How would | write a basic screen saver (like, blank the screen) in Delphi?

A: An easy implementation would be something like this:

var

f: tForm;

begin
f := tForm.create(self);
f.WindowState := wsMaximized;
f.color := black;
f.borderStyle := bsNone;
f.show;

end;

There is more to do, of course. You must have a way back from there. Perhaps an
actual form that has a mouse click event programmed to f.close it. Also, you want to
hide the mouse. Etc, etc. But, this answers the question.



memo field value insertion

Q: This question concerns how to transfer the text in a TMemo component on a form
to a TMemofield in a Paradox table. In the application in question, there is a TMemo
field on the form and, when a Paradox record is read from the table, shows the contents
of the memo field on the form by doing a TMemofield.lines.assign(TMemo). This works
fine to show the memo field on the form. Then, the user changes the text and we
want to move the changed text back to the TMemofield. You can't just do a
TMemofield := TMemo, like you can in Objectpal, and I've tried every combination | can
think of and it either generates a syntax error or runtime error. | don't want to use a db-
aware component because of the way the application is designed.

A: This is not necessarily so very easy. | made an example for you.

procedure TForml.ButtonlClick (Sender: TObject);
var
t: TTable;
begin
t := TTable.create(self);
with t do
begin
DatabaseName := 'MyAlias'; {personal alias}
TableName := 'MyTbl.db';
open;
edit;
insert;
fieldByName ('TheField') .assign (memol.lines); {This is it!}
post; {required!!!}
close;
end; { End of the with statement. }
end;



Q: How do | handle TEdit text with windows messages only?
A:

procedure TForml.ButtonlClick (Sender: TObject);
var

p: pChar;
i: integer;
begin

i editl.perform(wm GetTextLength, 0, 0) + 1;
p := AllocMem(i);
editl.perform(wm GetText, i, longint(p));
edit2.perform(wm_SetText, 0, longint(p));
FreeMem (p, 1i);

end;



VCL and components Help

TBitmap TFont TReader
TBlobStream TFontDialog TReport
TCalendar THelpEvent TSpeedButton
TCanvas Tlmage TStoredProc
TCompatibleStream TList TStringGrid
TDatabase TListBox TTabbed Notebook
TDBGrid TMediaPlayer TTable
TDBNavigator TMemo TWriter
TEdit TMenu
TField TOutline ChartFX
Topics

Dynamic components

general component information
custom components

using components

Controlling components

How do you control a scroll bar manually?

What is the easiest way to change the control menu of a form based application ?
How do | hide the caption bar?

Property Editors
Gray Paper - Delphi Property Editors for Beginners
How do | make a component that uses the built in editor for a TStrings property?




created on the fly
Q. "How can VCL components be created on the fly at run-time?"

A. *The following code will create a modal password form at runtime.
The TPasswordForm type is assumed to be created already in a
seperate unit.

with TPasswordForm.Create (Application) do

begin ( i.e TForml, TPasswordForm etc. }
ShowModal;
Free;

end;

* The following are the general steps to add a component to a form at
run-time:

1. Create an instance variable of the component type that you wish to
create {i.e. TButton }. Note: instance variables are used to point
to an actual instance of an object. They are not objects themselves.

2. Use the component's Create constructor method to create an instance
of the component and assign the instance reference to the instance
variable created in step 1.

3. Assign a parent to the component's Parent property (i.e. Form1,
Panel1, etc)
property.

4. Set any other properties that are necessary (i.e. Width, Height).

5. Finally, to make the component appear on the form by setting the
component's Visible property to True.

6. When done with the component make sure the component's Free method
is called.

The following demonstrates how to add a TButton component to the
current form at run-time:

var

TempButton : TButton; { This is only a pointer to a TButton }
begin
TempButton := TButton.Create(Self); Self refers to the form }

TempButton.Caption := 'Run-time'; Assign properties now }
TempButton.Visible := True; Show to button }
end;

{

TempButton.parent := Self; { Must assign the Parent }
{
{

Note: The TempButton's Free method must be called before or during
the time that the form gets closed.

* Creating components using RTTI (Run time Type Information)



With Delphi's run time type information (RTTI), an object can easily
create another instance of itself by calling the Newlnstance method
or using it's ClassType method which returns it's class and then using
that to call the Create constructor:

NewObject := ExistingObject.ClassType.Create(...) ;

The Dynalnst project in the \Delphi\Demos\Dynalnst directory
demonstrates how to create controls at runtime using RTTI.



popup menu

Q. How can the component that was right clicked be determined while in an event
handler of a popup Menultem?

A. Use the PopupComponent property of the PopupMenu component to determine
what control was right clicked.

procedure TForml.PopupltemlClick (Sender: TObject):;
begin

Labell.Caption := PopupMenul.PopupComponent.ClassName;
end;

The form's ActiveControl property can also be used, however, the active control
may not necessarily be the control that caused the popup menu to appear.



control specs

Q.

A.

"What limits are known of the standard Delphi controls?"

There can be 16368 tabs in a Tab Control.

There can be 5440 Items in a ComboBox.

There can be 5440 Items in a ListBox.

There can be 570 pages in a NoteBook control.

There can be 16368 palette pages in the Delphi Component Palette.

Note: Going beyond these limits may cause serious errors.



font size in pixels

Q. How can | determine the Length in pixels of a string after a specific font has been
applied to it?

A. The two methods, TextHeigh and TextWidth, can be used to determine both the
text height and width of a string in pixels. These methods can only be accessed
through components that have a Canvas property such as TForm. The TPanel
component does not have access to its Canvas property by default because it is
protected.

If a component doesn't have a Canvas property then The following function will
return the text width based on the font passed.

function GetTextWidth (CanvasOWner: TForm; Text : String; TextFont : TFont):
Integer;
var
OldFont : TFont;
begin
OldFont := TFont.Create;
try
OldFont.Assign( CanvasOWner.Font );
CanvasOWner.Font.Assign( TextFont );

Result := CanvasOWner.Canvas.TextWidth (Text) ;
CanvasOWner.Font.Assign( OldFont );

finally
OldFont.Free;

end;

end;



message handling (early)
Q. How can | get messages before my application's window procedure is called?

A.  the following project source demonstrates how to get Window messages before
the application's window procedure is called. It is rare, if ever, that this needs to be
done. In most cases assigning a procedure to the Application.OnMessage will
accomplish the same thing.

program Projectl;

uses
Forms, messages, wintypes, winprocs,
Unitl in 'UNIT1.PAS' {Forml};

{$R *.RES}

var
OldWndProc: TFarProc;

function NewWndProc (hWndAppl: HWnd; Msg, wParam: Word;
lParam: Longint): Longint; export;
begin
NewWndProc := 0; { Default WndProc return value }

{ * * * Handle messages here; The message number is in Msg * * * }

NewWndProc := CallWindowProc (OldWndProc, hWndAppl, Msg,
wParam, lParam);
end;
begin
Application.CreateForm(TForml, Forml);
OldWndProc := TFarProc (GetWindowLong (Application.Handle,

GWL_ WNDPROC) ) ;
SetWindowLong (Application.Handle, GWL WNDPROC,
longint (@NewWndProc)) ;
Application.Run;
end.



listbox with h_scrollbar
Q. How can | get a horizontal scrollbar on a list box?

A. There isn't a property to do this but a message can be sent to a
listbox component. For example, the message could be sebt in the
form's OnActivate:

procedure TForml.FormActivate (Sender: TObject);
begin
SendMessage (Listboxl.Handle, LB SetHorizontalExtent,
1000, Longint(0));
end;



TMemo tabstops
Q. How can the tab stops be set in a TMemo control?

A. To change the tab stops for a multiline edit control (i.e. a TMemo) send the
EM_SetTabStops message to the component. The Tabs array indicates where the tab
stops will be located. Since the WParam parameter to SendMessage is 1, then all tab
stops will be set to the value passed in the Tabs array. Remember to set the
WantTabs property of TMemo to True to enable the tabs.

procedure TForml.FormCreate( Sender : TObject );
const
Tabs : array[ 1..1 ] of Integer = ( 10 );
begin
SendMessage ( Memol.Handle, EM SetTabStops, 1, Longint( @Tabs ) );
end;



splash screens
Q. Where is the best place to open a splash screen on program start up?

A. The best place to open a splash screen is in the project source file after the first
FormCreate and before the Run This is accomplished by creating a form on the fly
and then displaying it before the app is actual opened.

program Projectl;
uses Forms, Unitl in 'UNIT1.PAS' {Forml}, Splash;

{$R *.RES}
var
SplashScreen : TSplashScreen; {in the Splash unit}
begin
try
SplashScreen := TSplashScreen.Create (Application);
SplashScreen. Show;
SplashScreen.update; {To paint the splash screen}
Application.CreateForm (TForml, Forml);
{
do other CreatForms or any other processing
before the app is to be opened
}
SplashScreen.Close;
finally {Make sure the splash screen gets released}
SplashScreen.Free;
end;
Application.Run;

end.



If the name of an included .RES file is the same as the name of a .DPR file Delphi wll
overwrite it with it's own .RES file.



scrollbar control

Q. How can you do scrolling functions in a TForm component using keyboard
commands? For example, scrolling up and down when a PgUp or PgDown is
pressed. Is there some simple way to do this or does it have to be programmed by
capturing the keystrokes and manually responding to them?

A. Form scrolling is accomplished by modifying the VertScrollbar or HorzScrollbar
Postion properties of the form. The following code demonstrates how to do this:

procedure TForml.FormKeyDown (Sender: TObject; var Key: Word; Shift:
TshiftState);

const
PageDelta = 10;
begin
With VertScrollbar do
if Key = VK NEXT then Position := Position + PageDelta
else if Key = VK PRIOR then Position := Position - PageDelta;

end;



To fill multiple lines of a TString object use the SetText property. The null terminated
string is a concatination of each line of text delimeted by a carriage return character #13
in between For example the following statment:
Listbox1.ltems.SetText(‘aaaaa'#13'bbbbb'#13'ccccc')
will display the following in a listbox window:
aaaaa
bbbbb
cceee



Control array emulation

Q. "Is it possible to create something akin to the control array in VB? For example, |
want an group of buttons with a common event handler whereby the event handler picks
up an integer value for the particular button. In VB this would be done via the control
array index."

A. One way do to this is to set the Tag field for each button to a different number and
then create a common OnClick event handler that looks at the Sender's (as a TButton)
Tag field. Assign the same OnClick event handler to all the buttons in the group. The
OnClick event handler would look something like this:

procedure TForml.ButtonlClick(Sender: TObject); wvar cap: string;
begin
case TButton (sender) .Tag of
1: ShowMessage ('lst Button Pressed');
2: ShowMessage ('2nd Button Pressed');
3: ShowMessage ('3rd Button Pressed');
end;
end;

Q: | spend alot of time checking datatypes so that accessing the same property
of different objects does GPF.

The code tends to look like this:

fldname:="";

fld:=Components[I];

if (Components[I] is TDBedit) then
fldname:=TDBEdit (f1d) .DataField

else 1if (Components[I] is TDBLookupList) then
fldname:=TDBlookupList (f1d) .DataField

else if (Components[I] is TDBLookupCombo) then
fldname:=TDBlookupCombo (f1d) .DataField

else if (Components[I] is TDBListBox) then
fldname:=TDBListBox (fld) .DataField

else if (Components[I] is TDBComboBox) then
fldname:=TDBComboBOx (f1d) .DataField

else if (Components[I] is TDBCheckBox) then
fldname:=TDBCheckBox (f1d) .DataField

else 1if (Components[I] is TDBRadioGroup) then
fldname:=TDBRadioGroup (f1d) .DataField

else if (Components[I] is TDBMemo) then
fldname:=TDBMemo (f1d) .DataField;

Is there a way to use the classtype property in a case statement?
Would that be better?

A: No and yes. | suggestthat you declare constants that represent each class.



const
val TEdit = 1;
val TButton =
{etc, etc}

2;

Then, set the tag of each object to equal the object's constant. Then the case
statement is easy.

case (sender as tComponent).tag of

{ . . .1}

end;



Q: How can | verify if a string is a valid date?

function ValidDate (const s: String): Boolean;
begin
Result := True;
try
StrToDate (S) ;
except
ON EConvertError DO Result := False;
end;
end;



case use with objects
Q: How do | use a case statement to determine which object calls the procedure?

A: Use the object's TAG property.

case (sender as tButton).tag of
0: blah;
1: blah blah;

end;



This is an invalid typecast error. Look for an AS statement that is wrong.



Q: How do | put the current time on the title bar of my form?

A: Note: The placement of the time varies according to whether it is Win95 or below,
as well as the form's size. If the form is too narrow, this may write the time over the top
of the control buttons (maximize, minimize, etc).

unit Unitl;
interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, ExtCtrls;

type

TForml = class (TForm)
Timerl: TTimer;
procedure TimerlTimer (Sender: TObject);
procedure FormCreate (Sender: TObject);
procedure FormClose (Sender: TObject; var Action: TCloseAction);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Forml: TForml;
dc: hDC;

implementation
{$R *.DFM}

procedure TForml.TimerlTimer (Sender: TObject);
var
TheTime: array[0..80] of char;
begin
StrPCopy (TheTime, TimeToStr (time));
TextOut (dc, width DIV 2, 5, TheTime, StrLen (TheTime)):;
end;

procedure TForml.FormCreate (Sender: TObject);
begin

dc := GetWindowDC (handle) ;
end;

procedure TForml.FormClose (Sender: TObject; wvar Action: TCloseAction);
begin

ReleaseDC (handle, dc); {This *must* be manually released.}
end;

end.






Q: How do | use my own bitmap on the toolbar?

A: First, make a .DCR file (component resource) that has a bitmap (24 x 24) using the
image editor. Name the bitmap the same as the class name of your component. ALL
CAPSI!!

The DCR filename must match the PAS filename.
The bitmap's name must match the components classname (e.g. TFOO).



exponent function
Q: | am migrating from VB. Where is the exponent function?

A: There isn’t one, but it is simple to make one using Ln(). Ln() gives us the natural
logarithm of a number. Using that, we can get the exponentiation easily. E.g. If we
want XY (or Xto the Y power) we would write the code like this:

ExpXY = Exp(Ln(X) *Y);

To use a generic function, declare the formal parameters and function result as
Extended, and the conversions from the actual parameters and back to your result
variable will be done automatically. (Ln is the natural logarithm of a number).

{ Reproduced from post by Dr. Bob }
function SwartPower (X: LongInt; N: Word): LongInt;
var R: LongInt;

begin
if N = 0 then SwartPower := 1
else
begin
if N = 1 then SwartPower := X
else
begin
if Odd(N) then
begin
R = X;
Dec (N)
end
else R := 1;

while N > 1 do { inner loop O(log N) }

begin
if Odd(N) then R := R * X;
X = X * X;
N := N div 2

end;

if R > 1 then

SwartPower := R * X
else { save last multiplication with 1 }
SwartPower := X
end
end

end {SwartPower};



control menu changing
Q: What is the easiest way to change the control menu of a form based application ?

Example, | was to add an option called "Always on top" that can be checked and
unchecked at the user's will. This of course, should be there in addition to the "Move",
"Restore", "Maximize" etc. other control menu options.

A: type
TForml = class (TForm) ;
{...}
private
procedure WMSysCommand (VAR Message: TWMSysCommand) ;
message WM SYSCOMMAND;

procedure TForml.WMSysCommand (var Message: TWMSysCommand) ;

begin
Inherited;
IF Mesage.CmdType AND SFFFO = $F200 THEN
MessageBeep (0); {replace with code to DO something}
end;

procedure TForml.FormCreate (Sender: TObject);
begin

AppendMenu (GetSystemMenu (Handle, False), MF STRING, $F200, '&Wahoo!');
end;

This adds a new item named "Wahoo!" to the system menu, with a command ID
of $F200. | picked $F200 at random as a number near the regular SC_xxxx constants,
but greater than any of them. Note that the ID for a
system command must be evenly divisibly by 16, as Windows uses the lowest 4 bits of
the ID. That's also why you AND the value with $FFFO before comparing it to the
specific ID.

Here is a template for changing the system menu:

unit Unitl;
interface
uses

SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, Menus;

type
TForml = class (TForm)
procedure FormCreate (Sender: TObject);
private

{ Private declarations }



public
procedure winmsg(var msg:tmsg;var handled:boolean);
{This is what handles the messages}

procedure DOWHATEVER; {procedure to do whatever}
end;

var
Forml: TForml;

implementation

{SR *.DFM}
const ItemID=99; {the ID number for your menu item--can be anything}

procedure tforml.winmsg(var msg:tmsg;var handled:boolean);
begin
if msg.message=wm_ syscommand then{if the message is a system one...}
if msg.wparam = ItemID then DOWHATEVER; {then check if its parameter
is your Menu items ID, }
end;

procedure TForml.FormCreate (Sender: TObject);
begin
application.onmessage:=winmsg;
{tell your app that 'winmsg' is the application message handler}

AppendMenu (GetSystemMenu (forml.handle, false),mf separator,0,'');
{Add a seperator bar to forml}

AppendMenu (GetSystemMenu (forml.handle, false) ,mf byposition, ItemID,
'&New Item');
{add your menu item to forml}

AppendMenu (GetSystemMenu (application.handle, false),mf separator,0,'');
{Add a seperator bar to the application system menu (used when app
is minimized) }

AppendMenu (GetSystemMenu (application.handle, false),mf byposition,
ItemID, '&New Item'

{add your menu itemto the application system menu(used when app is
minimized) }

{for more information on the AppendMenu and GetSystemMenu see online
help}

end;
procdure TForm2.DOWHATEVER;
begin
{add whatever you want to this procedure}

end;

end.






Put this on the MouseDown method (not the MouseClick):
if button = mbRight then doSomething;



text tables (ASCII)
Q: How do | make an ASCII text table from a paradox table?
A:

procedure TForml.ButtonlClick (Sender: TObject);
var

tl, t2: tTable; {tl = PW table; t2 = ASCII version}
begin

tl := tTable.create(self);

with tl do begin
DataBaseName := 'DBDEMOS';
tableName := 'customer.db';
open;

end;

t2 := tTable.create(self);

with t2 do begin
DataBaseName := 'DBDEMOS';
tableName := 'myfile.txt';
TableType := ttASCII;
createTable;
open;
edit;
BatchMove (t1l, batCopy);
close;

end;

tl.close;

end;



Use LockWindowUpdate (self) to stop it. LockwindowUpdate (0) Will reset it as there can
be only one window locked at a time.



Group creation with DDE

Q: How do | initialte a DDE link to the program manager to create a new group?

A: Here it is from c:\delphi\demos\dde\ddedemo.dpr:

var
Name: string;
Macro: string;
Cmd: array[0..255] of Char;
begin
if GroupName.Text = '' then {an edit field on the form}

MessageDlg ('Group name can not be blank.', mtError, [mbOK], 0)
else

begin
Name := GroupName.Text;
Macro := Format ('[CreateGroup(%s)]', [Name]) + #13#10;

StrPCopy (Cmd, Macro);
DDEClient.OpenLink;
if not DDEClient.ExecuteMacro (Cmd, False) then

MessageDlg ('Unable to create group.', mtInformation, [mbOK], 0);
DDEClient.CloselLink;
GroupName.SelectAll;
end;
end;



formatting a data field
Q: How do | set a format for a data field?

A:
1. Select the table object, and double click.

2. Select the field that you want to format.
3. Use the DisplayFormat and the EditFormat properties to do what you want.
DisplayFormat works for when the field does not have focus.

EditFormat works for when the field has focus.

Use the commands as you would for the first parameter of the FormatFloat function, but
without the quotes.



uses sequence error

Q: Does anyone know about a syntax problem with the ordering of the USES
statement?

program CrtApp;

Program CrtApp;

(*uses {This order works!}

U X87 0a in 'G:\HS_LIB\UTILITY\U X87 0a.PAS',
WinCrt; *)

uses WinCrt, {This order does not work!}

U x87 Oa in 'G:\HS_LIB\UTILITY\U X87 OA.PAS';

begin Writeln ('Delphi'); end.

A: Known problem. Grab the updated DLIB utility from the libraries and add
SYSUTILS and TOOLHELP to DELPHI.DSL (or extract and remove WINCRT).



pointers and assignments

Q: if  write "Font := Canvas.Font" Font is not a pointer to Canvas.Font, Font takes on
the properties of Canvas.Font. | want to know how | can make a variable that is a
"pointer" to Canvas.Font.

In pointers it would have been:
procedure X( T : TType );

var
vP : "TType

begin
vP := QT;
{both of the following make changes to T}
T.Size := 10;
vP".Size := 12;

end;

what | want is:

procedure X ( canvas : TCanvas );
var
F : TFont
begin
F := canvas.Font; ({<-- ?? assigns copy instead of reference}

{I need both of the following to affect canvas' Font property}
F.Size := 10;
canvas.Size := 12;

end;

Sorry if it isn't clear ... does anyone remember what a pointer is now that Delphi is here?
A: The problem you are seeing is that in your context the variable Font is not a
variable of a class, or an instance of a class. It is a property, and the assignment
operator (:=) is being translated by the compiler into an Assign type operation by the
declaration of that property.

For example this code:

var
MyFontPtr : TFont;

begin
MyFontPtr := SomeCanvas.Font;

does result in an address being copied. Whereas this code:
begin

with Forml.Canvas do
Font := SomeCanvas.Font;

results in the following code:



Forml.Canvas.SetFont (SomeCanvas.Font) ;
which 'copies' the data in SomeCanvas.Font to Form1.Canvas.Font.

See also pointers and dynamic memory




dynamic array sizing
Q: Is there any way to dynamically redimension an array?

A: When you dynamically allocate space for an array, you *can* dynamically allocate
the size as needed. e.g.

type
TIntegerArray = array[0..32767] of integer; {Types don't allocate memory }
PIntegerArray = "“TIntegerArray;

var
I1,I2 : PIntegerArray;

begin

GetMem (I1,500*SizeOf (Integer)); { Il now points to a 500 element array }
GetMem (I2,1000*SizeOf (Integer)); { I2 now points to a 1000 element array }

Ok, now *THIS* kind of variable-sized array has been available in Pascal for many a
long year. That is, the kind where you decide the size at run-time but don't change it.
Here is an example that works with records: E.g.

TYPE
VarArray = Array[0..65520 DIV SizeOf (MyRecord)] OF MyRecord;
ptrVarArray = “VarArray;
VAR
MyArray : ptrVarArray;
GetMem (MyArray, NumNeeded*SizeOf (MyRecord));

See? You define an array TYPE as large as possible, given the almost-64k limit
on the size of a single variable. You define a pointer to that type. And you allocate just
enough memory to hold the actual number needed.

FWIW, You can definitely use a TList too, but you'll need to define a simple OBJECT
that holds your variant record, because TLists only hold TObjects and their
descendants.

dhkkhkkhhkhhhhhhhhhhhhhhhhhhhhhhrhrsx

Here is a later post on C-Serve:

ReAllocMem comes closest. You allocate your array on the heap with some incantations
like

Type
TIntArray = Array [0..High(Word) div Sizeof (Integer) -1] of Integer;
{ declares the maximum size possible for an array of Integers }
PIntArray = "TIntArray;

Procedure AllocArray( Var pArr: PIntArray; items: Word;



Var maxIndex: Word);
Begin
If items > 0 Then Begin
GetMem( pArr, items * Sizeof( Integer ));
maxIndex := Pred( items );
End
Else
pArr := Nil;
End;

Procedure ReDimArray( Var pArr: PIntArray; newltems: Word;
Var maxIndex: Word );
Begin
If pArr = Nil Then
AllocArray( pArr, newltems, maxIndex )
Else Begin
ReAllocMem( pArr, Succ (maxIndex) *Sizeof (Integer),
newltems*Sizeof (Integer));
maxIndex := Pred( newltems );
End;
End;

Procedure DisposeArray( Var pArr: PIntArray; maxIndex: Word );
Begin
FreeMem( pArr, Succ (maxIndex)*SizeOf (Integer));
End;

Var
pMyArray: PIntArray;
maxIndex, i: Word;

Begin
try
AllocArray( pMyArray, 100, maxIndex );
For i:= 0 To maxIndex Do

pMyArray”[i] := 1i;

RedimArray( pMyArray, 200, maxIndex );
For i:= 0 To maxIndex div 2 Do
pMyArray” [Succ (maxIndex div 2)+i] := Sqgr (pMyArray”[il]);

finally
DisposeArray( pMyArray, maxIndex );
end;

"YIKES" i hear you say, "do i have to do this kind of gyrations for each array type i might
need???". Well, you could, but it is not very difficult to write a set of generic procedures
that will work for every base type you might use for an array. We assume that the array
type is always declared with a lower bound of 0 and also use Cardinal instead of Word
so the procedures will automagically expand to handle > 64K arrays under Delphi32.

Procedure AllocArray( Var pArr: Pointer; items, itemsize: Cardinal;
Var maxIndex: Cardinal);
Begin



If items > 0 Then Begin
GetMem( pArr, items * itemsize);
maxIndex := Pred( items );
End
Else Begin
pArr := Nil;
maxIndex := 0; { WARNING! This is still an invalid index here! }
End;
End;

Procedure ReDimArray( Var pArr: Pointer; newltems, itemsize: Cardinal;
Var maxIndex: Cardinal );
Begin
If pArr = Nil Then
AllocArray( pArr, newltems, itemsize, maxIndex )
Else Begin
ReAllocMem( pArr, Succ (maxIndex)*itemsize,
newltems*itemsize) ;
maxIndex := Pred( newltems );
End;
End;

Procedure DisposeArray( Var pArr: Pointer; itemsize, maxIndex: Cardinal );
Begin
FreeMem( pArr, Succ (maxIndex)*itemsize);
End;

To use these procedures to make a dynamic array of Double, for example, you would
proceed as follows:

type
{we can directly declare a pointer to an array, no need to declare
the array first}
PDoubleArray = "“Array [0..High(Cardinal) div Sizeof (Double) -1] of
Double;

Var
pDbl: PDoubleArray;
maxIndex, 1i: Cardinal;
deg2arc: Double;

Begin
deg2arc := Pi/180.0;
try
AllocArray( pDbl, 360, Sizeof( Double ), maxIndex );
For i:= 0 To maxIndex Do
pDbl”[i] := Sin( Float (i) * deg2arc );
ReDimArray( pDlb, 720, Sizeof( Double ), maxIndex );
For i:= 360 To maxIndex Do
pDbl”[i] := Cos( Float (i-360) * deg2arc );
finally
DisposeArray( pDbl, Sizeof (Double), maxIndex );
end;

And now the final icing: all this was typed off forehead; no idea if it will even compile



<eg>! And a safety net feature is still missing: AllocArray and RedimArray should raise
an exception if you try to allocate an array > 64Kbyte under Delphi16. | left this out since
i'm not really familiar with these beasties (exceptions) yet. Delphi may do it anyway if
range checking is enabled.

Here is Peter Below's approach:
time for my canned reply re. dynamic arrays:
You allocate your array on the heap with some incantations like

Type
TIntArray = Array [0..High (Word) div Sizeof (Integer) -1] of Integer;
{ declares the maximum size possible for an array of Integers }
PIntArray = "“TIntArray;

Procedure AllocArray( Var pArr: PIntArray; items: Word;
Var maxIndex: Word) ;
Begin
If items > 0 Then Begin
GetMem( pArr, items * Sizeof( Integer ));
maxIndex := Pred( items );
End
Else
pArr := Nil;
End;

Procedure ReDimArray( Var pArr: PIntArray; newltems: Word;
Var maxIndex: Word );
Begin
If pArr = Nil Then
AllocArray( pArr, newltems, maxIndex )
Else Begin
ReAllocMem( pArr, Succ (maxIndex)*Sizeof (Integer),
newltems*Sizeof (Integer));
maxIndex := Pred( newltems );
End;
End;

Procedure DisposeArray( Var pArr: PIntArray; maxIndex: Word );
Begin
FreeMem( pArr, Succ (maxIndex)*SizeOf (Integer));
End;

Var
pMyArray: PIntArray;
maxIndex, 1i: Word;

Begin
try
AllocArray( pMyArray, 100, maxIndex );
For i:= 0 To maxIndex Do

pMyArray”[i] := 1i;



RedimArray ( pMyArray, 200, maxIndex );

For i:= 0 To maxIndex div 2 Do
pMyArray” [Succ (maxIndex div 2)+i] := Sqgr (pMyArray”[il);
finally
end;

"YIKES" | hear you say, "do | have to do this kind of gyrations for each array type i might
need???". Well, you could, but it is not very difficult to write a set of generic procedures
that will work for every base type you might use for an array. We assume that the array
type is always declared with a lower bound of 0 and also use Cardinal instead of Word
so the procedures will automagically expand to handle > 64K arrays under Delphi32.

Procedure AllocArray( Var pArr: Pointer; items, itemsize): Card



| want to be able to right click on my VBX and have a popup menu display. How do |
trap for that?

A: Hereitis:

procedure TForml.FormMouseDown (Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);
begin
if button = mbRight then
WITH Sender AS TControl DO
WITH ClientToScreen (Point (X,Y)) DO
BEGIN
PopupMenul .PopupComponent := TComponent (Sender) ;
PopupMenul . Popup (X,Y) ;
END;
end;

Note: The form's popupMenu property must be empty, or it will popup from
everywhere. If you want the form to be the only place showing the popup, place this
method on the form's OnMouseDown event. [If you want the VBX to be the only place,
then place it on the VBX's OnMouseDown event, etc.



callbacks

Q: | have a unit that does a callback function (from a DLL). In this unit, | have
declared a global variable. When | do the callback, it is unable to 'see' the global
variable. Both functions are in the same unit. Why is this and what do | do?

A: Turn off smart callbacks and add this:

{$K-}

Because of how things are being passed to the CPU (register manipulation) the scope
has changed through a callback.



cursor loading
Q: How do | use one of the cursor files in the c:\delphi\images\cursors?

A: Load the cursor into a RES file. (The image editor will let you do that.) Then do
this:

{SR c:\programs\delphi\MyFile.res}
const PutTheCursorHere Dude = 1; {arbitrary number}

procedure stuff;

begin

screen.cursors [PutTheCursorHere Dude] := LoadCursor (hInstance,
pChar ('cursor 1'));

screen.cursor := PutTheCursorHere Dude;

end;



ADD (syntax error)

Q: | use the help file example for the ADD method and | get an error message "comma
expected". Why?

A: The ADD method requires an undocumented fourth parameter. (OOPS!) It says
whether the field is required. (true = required)

Here is the working code for that example:

var
t: tTable;
begin
t := tTable.create(self);
with t do
begin
Active := False;
DatabaseName := 'lwl';
TableName := 'hoser';
TableType := ttParadox;
with FieldDefs do
begin
Clear;
Add('Fieldl', ftInteger, 0, false);
Add('Field2', ftInteger, 0, false);
end;
with IndexDefs do
begin
Clear;
Add ('FieldlIndex', 'Fieldl', [ixPrimary, ixUniquel);
end;
CreateTable;
end;
end;



packing a dBASE table
Q: How do | pack a dBASE table?

A: To pack a dBASE table that has been opened with a TTable use the BDE function
DBIPackTable. There are two basic steps to do this:

1. Add the following units to our uses clause: DBITYPES, DBIPROCS and DBIERRS.

2) Then call the BDE function as follows:

DBIPackTable (Tablel.DbHandle, Tablel.Handle, 'TABLENAME.DBF', szDBASE, TRUE);

Note: The table must be opened in exclusive mode.



Sybase: Updated tables

In order to create an updatable Sybase SQL query using the TQuery component you
need to specify the name of the table's owner if it isn't yourself.

e.g. If youwish to set RequestLive = TRUE (and Active) your SQL statement should
read something like this:

Select * from 'myname.tablename' {notice the quotes}

Using a SQL statement like this:

Select * from tablename

returns errors because no owner was specified. Additionally you MUST include quotes
when specifying the owner name or the database engine will complain. Other then
that, it works like a charm!



General SQL.:

How can | reference a field name with a space in a query?

How do | pass a variable to a query?

How do | display a record that has the table's MAX value?

How can | use the aggregate functions (avg, sum, count, max, min) with a table?
| get an "Error creating cursor handle" message.

How do | get the result from a TStoredProc?

What is the syntax for the SQL SubString() method?

Sybase:

Updated tables
Error Message: 'connection is in use by another statement'.

Interbase:
How can | make it run faster?



Optimizing code

Original code:

if ActiveControl is TDBEdit then
(ActiveControl as TDBEdit) .CutToClipboard

else 1f ActiveControl is TDBMemo then
(ActiveControl as TDBMemo) .CutToClipboard;

New and improved code:
if ActiveControl is TCustomMemo then
TCustomMemo (ActiveControl) .CutToClipboard;

This works the same as what you had with less overhead. TCustomMemo is the
ancestor to both TMemo and TDBMemo, so the typecast works fine. Also, using "is"
and "as" in the same statement is redundant and expensive.



Q: | have a table grid, edit field, and a pushbutton. When | do a FindNearest from the
pushbutton

Tablel.FindNearest ([editl.text]);

it only shows the actual data if | write in the whole value to be found. If | enter only
partial values, the scroll bar shows that a record was found, but it doesn't display. How
do | get it to display?

A: The answer is that it DOES display. Because of the way that the value is
evaluated, you should pad the string with zeros to the size of the (in this case) CustNo.
(CustNo is a number field. If you enter a partial value, it is seen as a lower value
number.)



Make sure that you say report.Initialvalues.clear before you call the report.



Q: How do | create complex indices on dBASE tables in Delphi?

A: Compound indices must be expressions, as follows:

MyTable.AddIndex ('MyTagName', 'FIELDINAME+FIELD2NAME', [ixExpression]);

This is required on compound indices. You can even use other expressions, such as
UPPER (FIELD1+FIELD2). Note that [ixExpression] is required, but NOT documented in
any help file | can find, and [ixCaseInsensitive] plain doesn't work for dBase files.
Note further that such expression indices rule out using SetRange, and perhaps other
methods. However, I've heard that using the "long winded" version of SetRange will
work.

e.g.

with tablel do

begin
SetRangeStart;
FieldsByName ('FIELD1') .AsString := 'myString';
FieldsByName ('FIELD2') .AsString := ' 1';
SetRangeEnd;
FieldsByName ('FIELD1') .AsString 'myString';
FieldsByName ('FIELD2') .AsString := '999';
ApplyRange;

end;



Q: What is the Object Pascal equivalent of C's "union" reserved word?

A: ltis a variant record in Delphi.
the same space (but not at the same time, of course).

Variant records allow for different types to occupy
The space allocated will be as

large as the largest possible variation, but there need be no needless duplication of

memory allocated. This is how a variant record is declared:

purchase = record
amount: real;
{more stuff}
case MethodOfPayment of

check: (check number: integer;
checkAmt: real;
LicenseNumber: string[20]);

CreditCard: (card: CardType;
ExpMonth: 1..12;
ExpYear: YearType);

end;
end;

Unions in Delphi/Pascal are not a reserved word as much as an operator.

a union (Pascal style) is done:

var
a, b, c: set of char;
begin
a := ['a'..'z"'"];
b := [lal, ICI, lel, lgl];
c — [vav ‘d‘, ‘Z‘],‘
ifa-b=1["b', 'd', '"f', 'h'..'z'] then
blah; {difference}
ifb+c=1['a'..'d", 'e', 'g', 'z'] then
blah; {union}
if b * ¢ = ['a', 'c'] then
blah; {intersection}

end;

Here is how



SubString('Lloyd is the greatest!!!' from 1 for 5)



TMemo

How can the tab stops be set in a TMemo control?

How can | tell the length in bytes of a memo field?

How can | get to the bottom of a memo field with code?

How do | fill a memo field from a table?

How do | know which line number | am currently on in a TMemo?
How do | filla TMemo from a PChar?

How can | turn a memo's contents into a PChar?

How can | tell how many lines are showing in a memo?

How can | trap for <CTRL-RETURN> in a TMemo?




Error code 105 means "file not open for output”. You should add the WinCRT unit to
your uses list. (This is mentioned in MANUALS.TXT in your \DELPHI directory).



Q: How do | execute a program and have my code wait until it is finished?

A: Here is the 16 bit version:

uses Wintypes,WinProcs, Toolhelp,Classes, Forms;

Function WinExecAndWait (Path : string; Visibility : word) : word;
var
InstanceID : THandle;
PathLen : integer;
begin
{ inplace conversion of a String to a PChar }
PathLen := Length (Path);
Move (Path[1l],Path[0],PathLen) ;
Path[PathLen] := #00;
{ Try to run the application }
InstanceID := WinExec (QPath,Visibility);
if InstanceID < 32 then { a value less than 32 indicates an Exec error }
WinExecAndWait := InstancelD
else begin
Repeat
Application.ProcessMessages;
until Application.Terminated or (GetModuleUsage (InstanceID) = 0);
WinExecAndWait := 32;
end;
end;

Here is the 32 bit version:

function WinExecAndWait32 (FileName:String; Visibility : integer) :integer;
var
zAppName:array[0..512] of char;
zCurDir:array[0..255] of char;
WorkDir:String;
StartupInfo:TStartupInfo;
ProcessInfo:TProcessInformation;
begin
StrPCopy (zAppName, FileName) ;
GetDir (0,WorkDir) ;
StrPCopy (zCurDir,WorkDir) ;
FillChar (StartupInfo,Sizeof (StartupInfo), #0);

StartupInfo.cb := Sizeof (StartupInfo);
StartupInfo.dwFlags := STARTF USESHOWWINDOW;
StartupInfo.wShowWindow := Visibility;
if not CreateProcess (nil,
zAppName, { pointer to command line string }
nil, { pointer to process security attributes }
nil, { pointer to thread security attributes }
false, { handle inheritance flag }
{

CREATE NEW CONSOLE or
NORMAL PRIORITY CLASS,

creation flags }

nil, { pointer to new environment block }
nil, { pointer to current directory name }
StartupInfo, { pointer to STARTUPINFO }
ProcessInfo) then Result := -1 { pointer to PROCESS INF }

else begin



WaitforSingleObject (ProcessInfo.hProcess, INFINITE) ;
GetExitCodeProcess (ProcessInfo.hProcess,Result) ;
end;
end;

{Thanks to Pat Ritchey for these functions.}



MDX and DBEF files

Q: | have a DBF table that | can't open because it is expecting an MDX (production
index) file. | lost (deleted) that file. What do | do now?

A: Byte 28 in the DBF file header indicates whether an MDX file is needed. (0 = no
MDX needed; 1 = MDX needed.) Here is some code that makes the change for you.
It uses a radio group where the first item is NO MDX (element 0), and the second item
is USES MDX (element 1). This app also uses the TOpenDialog component.

procedure TForml.ButtonlClick (Sender: TObject);
var
f: file of byte;
b: byte;
begin
if OpenDialogl.execute then
begin
assignFile(f, OpenDialogl.FileName) ;
reset (f);
seek (f, 28);
b := RadioGroupl.ItemIndex; {0 = no MDX; 1 = use MDX}
write(f, Db);
closefile (f);
end;
OpenDialogl.FileName := '*.dbf'; {reset the filter}
end;



Q: How do | do pointer arithmetic in Delphi?

A: If you are doing dynamic memory allocation, it is done like this:
uses WinCRT;

procedure TForml.ButtonlClick (Sender: TObject):;
var
MyArray: array[0..30] of char;
b: ~char;
i: integer;
begin
StrCopy (MyArray, 'Lloyd is the greatest!!!'");
b := @MyArray;
for 1 := StrlLen (MyArray) downto 0 do
begin
write (b?);
inc (b);
end;
end;

The amount by which the pointer is incremented is the correct size. (i.e.

of the object pointed to.) The following code proves that.

var
Pl, P2 : “Longlnt;
L : LongInt;

begin
Pl := QL;
P2 := QL;
Inc (P2);
L := Ofs(P2") - Ofs(P1"); {L = 4; sizeof(longlInt)}

end;

It is the size



Q: Itry to use ODBC, but when | set the table to active, it won't let me. | can display
the data if it is in read only mode. | can edit this information correctly if | use paradox
for windows 5.0. What gives?

A: You have separate installs of PW and Delphi that point to different IDAPI directories.
Have them point to the same place.



Q: How can | tell if share is loaded from Delphi?

A:
function IsShareLoaded: Boolean;
var
f: file of word;
data: word;
IsSharelInstalled: Boolean;
begin
assign(f, 'im here.not');
rewrite (f) ;
write (f, data);
asm
mov IsSharelInstalled, true
mov bx, TFileRec (f) .handle
XOr CX, CX
xor dx, dx
mov si, O
mov di, 2
mov al, O
mov ah, $5C
int $21
jc  @@NoError
dec IsSharelInstalled
@@NoError:
end; {asm section}

result := IsSharelInstalled;
close (f);
erase (f);

end;



function IntToBinaryStr(TheVal: Longint): string;
var
counter: Longint;
begin
{This part is here because we remove leading zeros. That
means that a zero value would return an empty string.}
if TheVal = 0 then begin
result :='0"
exit;
end,;

result :=";
counter := $80000000;

{Suppress leading zeros}
while ((counter and TheVal) = 0) do begin

counter := counter shr 1;

if (counter = 0) then break; {We found our first "1".}
end;

while counter > 0 do begin
if (counter and TheVal) = 0 then result := result + '0'
else result :=result +'1";
counter := counter shr 1;
end;
end;



The equivalent is a query:
SELECT MAX(Amount) FROM ORDERS



Q: How do | create a floating palette window?

A: The tricky thing is to make sure the palette window always appears "in front" of the
main window, but not necessarily "on top" of all other windows. This effect can be
achieved by overriding the CreateParams method for your palette form. For example,

procedure TForm2.CreateParams( var Params: TCreateParams );
begin

inherited CreateParams( Params );

with Params do

begin
Style := Style or ws_ Overlapped;
WndParent := Forml.Handle;

end;

end;



Q: Why aren't Delphi EXE files as small as BP files? (It always seems to be 150K+.)

A: The difference that you're seeing is the difference in OWL vs. VCL. If BP7 *could*
compile a Delphi app (it can't because of language extensions), the executable would
be the same size (give or take a hundred bytes) as the Delphi compiled executable.
So to answer your question, Delphi already does compile and executable as small as
BP7 does.

Program ExitWin;
uses WinProcs;
begin
ExitWindowsExec ('', '');
end.

will create a 2816 byte executable with the Delphi compiler. Then, if you run
WS8LOSS.EXE, it will shrink it down to 2463 bytes!!!

Note: This program will exit and restart windows.

*khkkkkkhkhkkhkkhkhkkhkhkhhkhkk

Here is one that came about as a result of a small competition on compuserve. Here is
the essence of the thread:

Hi James,

> The program also iterates through the active tasks looking at module names. If it can
go smaller, I'd love to see how but | won't be upset if it stays at 17k. :)

Well, I'm willing to go for half of your size (I love a good challenge before breakfast)...

> This exe makes sure no Office apps are running by looking for specific module
names in the task list. If one is found, we throw up that darn message box and quit.

Groetjes,
Dr. "I want to climb the mountain because it's there!" Bob

*hkkkkkkhkkkkhkkk

You're on! :)

The great way to learn is to see someone do something just a little bit better. So here
you go...

MSOFFICE
VB
WINWORD



EXCEL
MSACCESS
PP4

These are the modules names. Basicall, if one of these is running you got to throw up a
message box and then get out. It none are running, you need to ShellExecute another
EXE, passing it any command line arguments this program receives.

I'm looking forward to your results.
'l have been to the top of the mountain, and it was good." - Beevis and Butthead <g>

James Foxall

*hkkhkkkhkhkhhhik

Hi James,

You had an executable of 17Kb, right? Well, I've done it in less than 2.5 Kb (in fact, |
ended up with 2133 bytes - including on-line help <g>). You'll have to supply the setup
routine as command-line arguments, but other than that it'll work just fine.

(It'll probably be somewhat smaller if you hardcode the 'install sequence' but | didn't
know what they were, so...)

{$a+,B-,D-,F-,G+,I-,K+,L-,N-,P-,0-,R-,S-,T-,V-,W-,X+,Y-}
{$M 32768,0}
program NoOffice;
{
File: NOOFFICE.PAS
Author: Bob Swart
Compiler: Borland Pascal 7.01
Purpose: To quit when any MS Office module is loaded,
otherwise run the command-line arguments...
Usage: NOOFFICE Setup /X
Example: NOOFFICE NOTEPAD C:\CONFIG.SYS

Code Size: 1154 Bytes
Data Size: 338 Bytes
.EXE Size: 2560 Bytes (2133 after running W8LOSS.EXE)
}
uses WinTypes, WinProcs;
Const
Run: String[127] = #0;
Const
Office : Array[0..5] of PChar =
("MSOFFICE', 'VB', "WINWORD', 'EXCEL', "MSACCESS', 'PP4") ;
var i: Integer;
begin
if ParamCount = 0 then
MessageBox (0, 'Usage: NOOFFICE <setup>', Office[0],



MB ICONINFORMATION OR MB OK)

else
begin
for 1:=0 to 5 do
begin
if GetModuleHandle (Office([i]) <> 0 then { found? }
begin
MessageBox (0, 'MS-0Office is still running!',Officeli],
MB_ICONHAND OR MB_OK);
Halt
end
end;
for i:=ParamCount downto 1 do Run := ParamStr (i) + #32 + Run;
WinExec (GRun[1], SW_SHOW)
end

end.



Q: How do | access ACCESS tables?

A:  The ODBC driver provided with Access 2.0 is designed to work only within the
Microsoft Office environment. To work with ODBC/Access in Delphi, you need the
Microsoft ODBC Desktop Driver kit, part# 273-054-030 available from Microsoft Direct
for $10.25US (post on WINEXT for where to get it in

your country if you are not in the US). It is also available on the Jan. MSDN, Level 2
(Development Platform) CD4 \ODBC\X86 as part of the ODBC 2.1 SDK. Be aware that
your redistribution rights for the Desktop Drivers are pretty restricted by Microsoft. For
info on (and objections to) the restrictions post on the WINEXT forum.

You also need the following ODBC files.
Minimum:
ODBC.DLL 03.10.1994, Version 2.00.1510
ODBCINST.DLL  03.10.1994, Version 2.00.1510
ODBCINST.HLP  11.08.1993
ODBCADM.EXE 11.08.1993, Version 1.02.3129
Better:
ODBC.DLL 12.07.1994, Version 2.10.2401
ODBCINST.DLL  12.07.1994, Version 2.10.2401
ODBCINST.HLP  12.07.1994
ODBCADM.EXE 12.07.1994, Version 2.10.2309
The following steps will get you started in Delphi
1. Using the ODBC Administrator, set-up a datasource for your database. Be sure to
specify a path to your mdb file. For the purposes of this explanation we'll say that the
datasource name is MYDSN.
2. Load the BDE Configuration utility.
3. Select New Driver.
4. Give the driver a name (call it ODBC_MYDSN).
5. In the driver combo box select, "Microsoft Access Driver (*.mdb)
6. In the name combo box select MYDSN
7. Go to the Alias page.
8. Select New Alias.

9. Enter MYDSN for name.



10. For Alias Type, select ODBC_MYDSN.

11. In Delphi, drop a DataSource, Table, and DBGrid on your form.

12. Set DBGrid1.DataSource to DataSource1.

13. Set DataSource1.DataSet to Table1.

14. Set Table1.DatabaseName to MYDSN.

15. In the TableName property in Table1, click the downarrow, you will see the "Login"
dialog. Press OK, after a short pause you will see a dropdown list with all your table

names. Select one.

16. Set the Active property in Table1 to True, the data from your table will be displayed
in the grid.



IF ARCHITECTS HAD TO WORK LIKE PROGRAMMERS...

Dear Mr. Architect:

Please design and build me a house. | am not quite sure of what | need, so you should
use your discretion.

My house should have between two and forty-five bedrooms. Just make sure the plans
are such that the bedrooms can be easily added or deleted. When you bring the
blueprints to me, | will make the final decision of what | want. Also, bring me the cost
breakdowns for each configuration so that | can arbitrarily pick one at a later time.

Keep in mind that the house | ultimately choose must cost less than the one | am
currently living in. Make sure, however, that you correct all the deficiencies that exist in
my current house (the floor of my kitchen

vibrates when | walk across it, and the walls don't have nearly enough insulation in
them).

As you design, also keep in mind that | want to keep yearly maintenance costs as low
as possible. This should mean the incorporation of extra-cost features like aluminum,
vinyl, or composite siding. (If you choose not to specify aluminum, be prepared to
explain your decision in detail.)

Please take care that modern design practices and the latest materials are used in
construction of the house, as | want it to be a showplace for the most up-to-date ideas
and methods. Be alerted, however, that kitchen should be designed to accommodate
(among other things) my 1952 Gibson refrigerator.

To assure that you are building the correct house for our entire family, you will need to
contact each of my children, and also our in-laws. My mother-in-law will have very
strong feelings about how the house should be designed, since she visits us at least
once a year. Make sure that you weigh all of thses options carefully and come to the
right decision. |, however, retain the right to overrule any decisions that you make.

Please don't bother me with small details right now. Your job is to develop the overall
plans for the house and get the big picture. At this time, for example, it is not appropriate
to be choosing the color of the carpeting. However, keep in mind that my wife likes blue.

Also, do not worry at this time about acquiring the resources to build the house itself.
Your first priority is to develop detailed plans and specifications. Once | approve these
plans, however, | would expect the

house to be under roof within 48 hours.

While you are designing this house specifically for me, keep in mind that sooner or later
| will have to sell it to someone else. It therefore should have appeal to a wide variety of



potential buyers. Please make sure before you finalize the plans that there is a
consensus of the potential homebuyers
in my area that they like the features this house has.

| advise you to run up and look at the house my neighbor build last year, as we like it a
great deal. It has many things that we feel we also need in our new home, particularily
the 75-foot swimming pool. With careful engineering, | believe that you can design this
into our new house without impacting the construction cost.

Please prepare a complete set of blueprints. It is not necessary at this time to do the
real design, since they will be used only for construction bids. Be advised, however, that
you will be held accountable for any increase of construction costs as a result of later
design changes.

You must be thrilled to be working on as an interesting project as this! To be able to use
the latest techniques and materials and to be given such freedom in your designs is
something that can't happen very often. Contact me as soon as possible with your ideas
and completed plans.

PS: My wife has just told me that she disagrees with many of the instructions I've given
you in this letter. As architect, it is your responsibility to resolve these differences. | have
tried in the past and have been unable to accomplish this. If you can't handle this
responsibility, | will have to find another architect.

PPS: Perhaps what | need is not a house at all, but a travel trailer. Please advise me as
soon as possible if this is the case.



Q: How do | print a form?

A: Prints all visible TLabel, TEdit, TMemo, TDBText, TDBEdit and TDBMemo
components on the form with proper place, size and font. Set the Form Scrollbar.Range
to 768 Horz and 1008 Vert for a 8 X 10.5 page at 96formPPI.

USES Printers;

procedure TForml.SpeedButtonlClick (Sender: TObject);
var

C : array[0..255] of char;

CLen, ScaleX, ScaleY, I : integer;

Format : Word; DC : HDC;

MComp : TMemo; R: TRect;

begin
Printer.BeginDoc;
DC := Printer.Canvas.Handle;
ScaleX := GetDeviceCaps (DC, LOGPIXELSX) div PixelsPerInch;
ScaleY := GetDeviceCaps (DC, LOGPIXELSY) div PixelsPerInch;
for I := 0 to ComponentCount-1 do
if (Components[I] is TCustomLabel) or (Components[I] is TCustomEdit) then
begin
MComp := TMemo (Components[I]);
if (MComp.visible) then
begin
Printer.Canvas.Font := MComp.Font;
DC := Printer.Canvas.Handle; {so DrawText knows about font}
R := MComp.BoundsRect;
R.Top := (R.Top + VertScrollBar.Position) * ScaleY;
R.Left := (R.Left + HorzScrollBar.Position) * ScaleX;
R.Bottom := (R.Bottom + VertScrollBar.Position) * ScaleY;
R.Right := (R.Right + HorzScrollBar.Position) * ScaleY;

if (not (Components|[I] is TCustomLabel)) and (MComp.BorderStyle =

bsSingle)
then Printer.Canvas.Rectangle (R.Left,R.Top,R.Right,R.Bottom);

Format := DT LEFT;
if (Components[I] is TEdit) or (Components[I] is TCustomMaskEdit) then
Format := Format or DT SINGLELINE or DT VCENTER
else
begin
if MComp.WordWrap then Format := DT WORDBREAK;
if MComp.Alignment = taCenter then Format := Format or DT CENTER;
if MComp.Alignment = taRightJustify then Format := Format or
DT RIGHT;
R.Bottom := R.Bottom + Printer.Canvas.Font.Height + 1;
end;
CLen := MComp.GetTextBuf (C,255);
R.Left := R.Left + ScaleX + ScaleX;
DrawText (DC, C, CLen, R, Format):;
end;
end;

Printer.EndDoc;
end;






Q: How can | use a different bitmap with each node?

A: This one is from Quentin. | haven't checked it out yet.

unit Toutdrwu;
interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, DBTables, DB, StdCtrls, Grids, Outline;

type
TForml = class (TForm)
Outlinel: TOutline;
Buttonl: TButton;
procedure OutlinelDrawItem (Control: TWinControl; Index: Integer;
Rect: TRect; State: TOwnerDrawState);
procedure ButtonlClick (Sender: TObject);
procedure FormCreate (Sender: TObject);
private
{ Private declarations }
public
bitmaps : arrayl[l..4] of tbitmap;
{ Public declarations }
end;

var
Forml: TForml;

implementation

{SR *.DFM}

procedure TForml.OutlinelDrawItem(Control: TWinControl; Index: Integer;
Rect: TRect; State: TOwnerDrawState);

var
for the item's bitmap }

VisibleCount,
ActualIndex: Integer;

begin

{draw on the control canvas, not on the form }
{ Find Item }

VisibleCount := 0;

for ActualIndex := 1 to ItemCount do begin
if Items[ActualIndex].IsVisible then inc (VisibleCount) ;
if Index = VisibleCount-1 then break;

end; { for }

{ rectangle }

{ offset }

{ Bitmap := bitmap }



with Canvas do if Bitmap <> nil then begin
BrushCopy (Bounds (Rect.Left + 2+ Items[ActuallIndex].level * 10,
Rect.Top, Bitmap.Width,
Bitmap.Height), Bitmap,
Bounds (0, 0, Bitmap.Width, bitmap }
{ four pixels between bitmap and text }
end;

Canvas.TextOut (Rect.Left + Offset + Items[Actuallndex].level * 10,
Rect.Top,
Items [ActuallIndex] .Text);
end;
end;

procedure TForml.ButtonlClick (Sender: TObject);
begin
with OutLinel do begin

AddObject (0, 'Level 1', Bitmaps[1l]):;
AddChildObject (1, 'Level 2', Bitmaps([2]);
AddChildObject (2, 'Level 3', BitmapsI[3]);
AddChildObject (3, 'Level 4', Bitmaps[4]);
AddObject (0, 'Level 1(a)', Bitmaps([1l]):
end;

end;

procedure TForml.FormCreate (Sender: TObject);

begin
bitmaps[1l] := tbitmap.create;
bitmaps[2] := tbitmap.create;
bitmaps([3] := tbitmap.create;
bitmaps[4] := tbitmap.create;
bitmaps[1].loadfromfile ('\delphilimages\buttons\globe.bmp"') ;
bitmaps[2].loadfromfile ('\delphilimages\buttons\copy.bmp"') ;
bitmaps[3].loadfromfile ('\delphilimages\buttons\links.bmp"') ;
bitmaps[4].loadfromfile ('\windows\waves.bmp') ;

end;

end.



Q: How do | do outline drag and drop?
A:
unit Unitl;

interface

uses

SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,

Forms, Dialogs, Grids, Outline;

type
TForml = class (TForm)
Outlinel: TOutline;
Outline2: TOutline;

procedure OutlineDragDrop (Sender, Source: TObject; X, Y: Integer);
procedure OutlineMouseDown (Sender: TObject; Button: TMouseButton;

Shift: TShiftState; X, Y: Integer);

procedure OutlineDragOver (Sender, Source: TObject; X, Y: Integer;

State: TDragState; wvar Accept: Boolean);

private
{ Private declarations }
public
{ Public declarations }
end;
var

Forml: TForml;
implementation
{SR *.DFM}

procedure TForml.OutlineDragDrop (Sender, Source: TObject; X, Y:

begin
with Sender as TOutline do
begin
AddChild (GetItem(x,Vy),
TOutline (Source) .Items[TOutline (Source) .SelectedItem]
end;
end;

Integer);

.Text) ;

procedure TForml.OutlineMouseDown (Sender: TObject; Button: TMouseButton;

Shift: TShiftState; X, Y: Integer);
begin
if Button = mbLeft then
with Sender as TOutline do
begin
if GetItem(x,y) >= 0 then
BeginDrag (False) ;
end;
end;

procedure TForml.OutlineDragOver (Sender, Source: TObject; X, Y:

Integer;



State: TDragState; wvar Accept: Boolean);
begin

if (Source is TOutline) and (TOutline (Source)
TOutline (Source) .SelectedItem) then

Accept := True
else
Accept := False;

end;

end.

.GetlItem(x,vVv)

<>



TStringGrid

How do | populate a TStringGrid with strings from a file...and save the strings after user
editing back to a file?

How do I highlight selected fields on a TStringGrid?

How do | make characters in a string in a TStringGrid different colors?

Here is a custom TStringGrid that will allow for inserting a whole row at a time.
How do I right justify a column of numeric data in a TStringGrid?




MKDir error (a compuserve thread)

Q:
Is it my imagination or is there something wrong with MKkDir() function ?!?!

| am using it as the online help instructs :

var
cNewDir: string;

begin
cNewDir := txtName.Text;
MkDir (cNewDir) ;
etc.

end;

but the compiler seems to fail with an error 94 "." expected and the cursor flashing after
the word MkDir and before the ( ???

Can it really be expecting a "." ???

A:

The error would indicate that you've redefined the identifier "MkDir" somewhere in your
app, and the compiler, due to scoping rules, is using your definition of "MkDir" rather
than the SYSTEM units definition.

My guess... you've named your unit MkDir.

Reply:

All | can say is *Damn your good*. | can't believe it was that. | can't believe you guessed
it from the little information | gave you. | have now kicked myself several times for being
so stupid.

Thanks for your help!



Q: What is a Callback function, and how do | create one?

A: A call back function is a function which you write, but is called by some other
program or module, such as windows. To create a callback function, you must first
declare a function type, the funciton itself, and implement

the function. In the interface section:

{ In main program interface }

type
TCallBackFunction = function(s: string): integer;
CallMe(s: string): integer;

And in the Implementation section:

{ In main program implementation }

procedure TestCallBack (CallBackFunction: TCallBackFunction); far; external
'Other';
{ Note that 'other' is a D1l containing the procedure TestCallBack }

function CallMe(s: PChar): integer;
begin

{ what ever you need to do }

CallMe := 1; { What ever you need to return }
end;

procedure TForml.ButtonlClick (Sender: TObject):;
begin

TestCallBack (CallMe) ;
end;

Note that in 'Other' you would also declare a function type, and use it
like this:

{ in library Other interface }
type
TMainFunction = function(s: string): integer;
TestCallBack (MainFunc: TMainFunction);
{ in library Other implementation }
TestCallBack (MainFunc: TMainFunction);
var
result: integer;
begin
result:=MainFunc ('test');
end;






The Top-14 ways things would be different if Microsoft built cars.
(drumroll, please...)

1. A particular model year of car wouldn't be available until AFTER that year, instead of
before.

2. Every time they repainted the lines on the road, you'd have to buy a new car.

3. Occasionally your car would just die for no reason, you'd have to restartit. For
some strange reason, you would just accept this.

4. You could only have one person at a time in your car, unless you bought a car '95 or
a car NT, but then you'd have to buy more seats.

5. You would be constantly pressured to upgrade your car. Wait a sec, it's that way
NOW!

6. Sun Motorsystems would make a car that was solar powered, twice as reliable, 5
times as fast, but only ran on 5% of the roads.

7. The oll, alternator, gas, engine warning lights would be replaced with a single
"General Car Fault" warning light.

8. People would get excited about the "new" features in Microsoft cars, forgetting
completely that they had been available in other brands for years.

9. We would still be waiting on the "6000 sux 58™ model to come out.
10. We'd all have to switch to Microsoft Gas (tm).
11. Lee lacocca would be hired on as Bill G.'s chauffeur.

12. The US government would be GETTING subsidies from an automaker, instead of
giving them.

13. New seats will force everyone to have the same size ass.

14. Ford, General Motors and Chrysler would all be complaining because Microsoft
was putting a radio in all its models.



Q. How do I change the color of a grid cell in a TDBGrid?

A. Enter the following code in the TDBGrid's OnDrawDataCell event:

Procedure TForml.DBGridlDrawDataCell (Sender: TObject; const Rect: TRect;
Field: TField; State: TGridDrawState);
begin
If gdFocused in State then
with (Sender as TDBGrid) .Canvas do begin
Brush.Color := clRed;
FillRect (Rect) ;
TextOut (Rect.Left, Rect.Top, Field.AsString);
end;
end;

Set the Default drawing to true. With this, it only has to draw the highlighted cell.
If you set DefaultDrawing to false, you must draw all the cells yourself with the canvas
properties.



Q. How do | show the contents of a memo field in a DBGrid?

A. Use the following code for the OnDrawDataCell event of the DBGrid. Note: before
running create a TMemoField object for the memo field by double clicking on the TTable
component and adding the memo field.

procedure TForml.DBGridlDrawDataCell (Sender: TObject; const Rect: TRect;
Field: TField; State: TGridDrawState);

var
P : array [0..50] of char; {array size is number of characters needed}
BS : tBlobStream; {from the memo field}
S : String;

begin

If Field is TMemoField then begin
with (Sender as TDBGrid) .Canvas do begin
{TablelNotes is the TMemoField}

BS := tBlobStream.Create (TablelNotes, bmRead);
FillChar (P, SizeOf (P), #0) ; {terminate the null string}
BS.Read (P, 50); {read 50 chars from memo into blobStream}
BS.Free;
S := StrPas (P);
while Pos (#13, S) > 0 do {remove carriage returns and}
S[Pos (#13, S)] := "' '; {line feeds}
While Pos (#10, S) > 0 do
S[Pos (#10, S)] := "' ';
FillRect (Rect) ; {clear the cell}
TextOut (Rect.Left, Rect.Top, S); {fill cell with memo data}
end;

end;
end;



Q. How do | do a locate on a non-indexed field?

A. The following function can be added to your to your unit and called as
follows:

Locate (Tablel, TablelLName, 'Beman');

Table1 is your table component, Table1LName is TField you've add with the
fields editor (double click on the table component) and 'Beman’ is the name
you want to find.

(* Locate will find SValue in a non-indexed table *)
Function Locate( const oTable: TTable; const oField: TField;
const sValue: String): Boolean;

var
bmPos : TBookMark;
bFound : Boolean;
begin
Locate := False;
bFound := False;

If not oTable.Active then Exit;
If oTable.FieldDefs.IndexOf ( oField.FieldName ) < 0 then Exit;
bmPos := oTable.GetBookMark;
With oTable do
begin
DisableControls;
First;
While not EOF do
if oField.AsString = sValue then
begin
Locate := True;
bFound := True;
Break;
end
else Next;
end ;
If (Not bFound) then oTable.GotoBookMark ( bmPos) ;
oTable.FreeBookMark ( bmPos );
oTable.EnableControls;
end;



Q. How do | override the default message handler for my Application?

A. You create a dynamic method that is indexed to the message constant
that you want to override. If you want to override the CM_DIALOGKEY
message you would declare the following procedure in the public
section of you class declaration:

Procedure CMDialogKey (var Message: TCMDialogKey) ;message CM DIALOGKEY;

It is common practice to declare the procedure name the same as the
message name minus the underscore. Your message handler would look

something like this:

Procedure TForml.CMDialogKey (var Message: TCMDialogKey) ;
begin
if CharCode = VK TAB then begin
{Process the Alt+Tab key here}
result := 1;
exit;
end;
inherited;
end;

Setting result to 1 stops further processing. The inherited
statement passes control to the parent handler. Be sure to
execute inherited for all the cases you don't want to handle.
Do not execute it for the ones you do handle.



Q. How can VCL components be created on the fly at run-time?

A. *The following code will create a modal password form at runtime. The
TPasswordForm type is a TForm descendent class defined either in the current unit or
in a separate unit referenced by the current unit's uses clause.

with TPasswordForm.Create (Application) do

begin ( i.e TForml, TPasswordForm etc. }
ShowModal; { Display form as a modal window }
Free; { Free the form when it is closed }
end;

* The following are the general steps to add a component to a form at run-time:

1. Declare an instance variable of the component type that you wish to create {i.e.
TButton }. Note: instance variables are used to point to an actual instance of an object.
They are not objects themselves.

2. Use the component's Create constructor to create an instance of the component
and assign the instance to the instance variable declared in step 1. All components'
Create constructors take a parameter - the component's owner. Except in special
circumstances, you should always pass the form as the owner parameter of the
component's Create constructor.

3. Assign a parent to the component's Parent property (i.e. Form1, Panel1, etc).
The Parent determines where the component will be displayed, and how the
component's Top and Left coordinates are interpreted. To place a component in a
groupbox, set the component's Parent property to the groupbox. For a component to
be visible, it must have a parent to display itself within.

4. Set any other properties that are necessary (i.e. Width, Height).

5. Finally, make the component appear on the form by setting the component's
Visible property to True.

6. If you created the component with an owner, you don't need to do anything to
free the component - it will be freed when the owner is destroyed. If you did not give
the component an owner when you created it, you are responsible for making sure the
component is freed when it is no longer needed.

The following demonstrates how to add a TButton component to the current form
at run-time:

var

TempButton : TButton; { This is only a pointer to a TButton }
begin
TempButton := TButton.Create(Self); Self refers to the form }

{

TempButton.Parent := Self; { Must assign the Parent }

TempButton.Caption := 'Run-time'; { Assign properties now }
TempButton.Visible := True; { Show to button }

end;

Since the button was created with an owner, it will be freed automatically when its
owner, the form, is freed.






Q. How can | get a horizontal scrollbar on a list box?

A. Send a LB_SetHorizontalExtent message to the listbox's window handle. It needs
to be set to something larger than the actual width of the listbox. For example, the
message could be sent in the form's OnCreate:

procedure TForml.FormCreate (Sender: TObject);
begin
SendMessage (Listboxl.Handle, LB_SetHorizontalExtent, Listboxl.width + 1,
Longint (0)) ;
end;



TCompatibleStream
--- Mike Scott --- Mobius Ltd

---------------- COMPSTRM.PAS

unit CompStrm;
interface

uses Classes ;

type
TCompatibleStream = class ;
{ TStreamObject }
TStreamObject = class( TComponent )
constructor Load( S : TCompatibleStream ) ; virtual ; abstract ;
procedure Store( S : TCompatibleStream ) ; virtual ; abstract ;

function GetObjectType : word ; virtual ; abstract ;
end ;

TStreamObjectClass = class of TStreamObject ;
{ TCompatibleStream }

TCompatibleStream = class( TFileStream )
function ReadString : string ;
procedure WriteString( var S : string ) ;
function StrRead : PChar ;
procedure StrWrite( P : PChar ) ;

function Get : TStreamObject ; virtual ;
procedure Put( AnObject : TStreamObject ) ; virtual ;
end ;

{ Register Type : use this to register your CompatibleStream objects
with the same ID they had in OWL }

procedure RegisterType( AClass : TStreamObjectClass ;

AnID . word ) ;
implementation
uses SysUtils, Controls ;
var Registry : TList ; { holds object ID and class information }
{ TClassInfo }
type

TClassInfo = class( TObject )
ClassType : TStreamObjectClass ;
ClassID : word ;
constructor Create( AClassType : TStreamObjectClass ;



AClassID : word ) ; virtual ;
end ;

constructor TClassInfo.Create( AClassType : TStreamObjectClass ;
AClassID : word )

var AnObject : TStreamObject ;

begin
if not Assigned( AClassType ) then
Raise EInvalidOperation.Create( 'Nil Class passed to TClassInfo.Create' )

if not AClassType.InheritsFrom( TStreamObject ) then
Raise EInvalidOperation.Create( 'Class ' + AClassType.ClassName +
' is not a descendent of TStreamObject' )

ClassType := AClassType ;
ClassID := AClassID ;
end ;

{ registry search functions }

function FindClassInfo( AClass : TClass ) : TClassInfo ;
var i : integer ;
begin
for i := Registry.Count - 1 downto 0 do begin
Result := TClassInfo( Registry.Items[ 1 1 ) ;
if Result.ClassType = AClass then exit ;
end ;
Raise EInvalidOperation.Create( 'Class ' + AClass.ClassName +
' has not been registered for streaming' ) ;
end ;
function FindClassInfoByID( AClassID : word ) : TClassInfo ;
var i : integer ;

AName : string[ 31 1 ;

begin
for i := Registry.Count - 1 downto 0 do begin
Result := TClassInfo( Registry.Items[ i ] ) ;
AName := TClassInfo( Registry.Items[ i1 ] ).ClassType.ClassName ;
if Result.ClassID = AClassID then exit ;
end ;

Raise EInvalidOperation.Create( 'Class ID ' + IntToStr( AClassID ) +
' does not correspond to a registered
class' ) ; end ;

procedure RegisterType( AClass : TStreamObjectClass ;
AnID : word )

var 1 : integer ;



begin
{ see if it's been registered already }

for i := Registry.Count - 1 downto 0 do
with TClassInfo( Registry[ i1 ] ) do if ClassType = AClass then
begin
if ClassID <> AnID then
Raise EInvalidOperation.Create( 'Class ' + AClass.ClassName +
' already registered with ID ' +
IntToStr ( ClassID ) ) ;
exit ;
end ;
Registry.Add( TClassInfo.Create( AClass, AnID ) ) ;
end ;

{ TCompatibleStream }

function TCompatibleStream.ReadString : string ;
begin
ReadBuffer ( Result[ 0 1, 1 ) ;
if byte( Result[ 0 ] ) > 0 then ReadBuffer( Result[ 1 ], byte( Result[ 0 ]
) ) 7 end ;
procedure TCompatibleStream.WriteString( var S : string ) ;
begin

WriteBuffer( S[ 0 ], 1 ) ;
if Length( S ) > 0 then WriteBuffer( S[ 1 ], Length( S ) ) ;
end ;

function TCompatibleStream.StrRead : PChar ;

var L : Word ;

P : PChar ;
begin
ReadBuffer( L, SizeOf( Word ) ) ;
if L = 0 then StrRead := nil else
begin
P := StrAlloc( L + 1 ) ;
ReadBuffer( P[ O ], L ) ;
P[ L ] := #0 ;
StrRead := P ;
end ;
end ;

procedure TCompatibleStream.StrWrite( P : PChar ) ;
var L : Word ;

begin
if P = nil then L := 0 else L := StrLen( P ) ;



WriteBuffer( L, SizeOf( Word ) ) ;
if L > 0 then WriteBuffer( P[ O ], L ) ;
end;

function TCompatibleStream.Get : TStreamObject ;

var AClassID : word ;

begin
{ read the object ID, find it in the registry and load the object }
ReadBuffer ( AClassID, sizeof( AClassID ) ) ;
Result := FindClassInfoByID( AClassID ) .ClassType.Load( Self ) ;
end ;

procedure TCompatibleStream.Put( AnObject : TStreamObject ) ;

var AClassInfo : TClassInfo ;
ANotedPosition : longint ;

DoTruncate : boolean ;
begin
{ get the object in the registry }
AClassInfo := FindClassInfo( AnObject.ClassType ) ;

{ note the position in case of a problem }
ANotedPosition := Position ;
try
{ write out the class id and call the store method }
WriteBuffer ( AClassInfo.ClassID, sizeof( AClassInfo.ClassID ) ) ;

AnObject.Store( Self ) ;

except
{ return to previous position and if we're at the EOF then truncate }
DoTruncate := Position = Size ;
Position := ANotedPosition ;
if DoTruncate then Write( ANotedPosition, 0 ) ;
Raise ;

end ;

end ;

{ exit proc stuff to clean up the registry }

procedure DoneCompStrm ; far ;

var 1 : integer ;
begin
{ free the registry }
for i := Registry.Count - 1 downto 0 do TObject( Registry.Items[ i1 ] ).Free

Registry.Free ;
end ;

begin



Registry := TList.Create ;
AddExitProc ( DoneCompStrm ) ;
end.



expression index search

Below is a generic (with some limits) search function that works on expression tags of
dBase files.

It is alpha code, barely tested, so use at your own risk <s>. Do let me know if you have
a problem. | may not be able to help you as | can be rather busy, but at least, I'll know
about it, and in time, may be able to solve the bugs.

The main limit is that it currently only supports character and date fields in the
expression. If your expression contains other fields, the function will not work. | may
expand it if the need arises for me, or you can try to expand it if you need the extra
capability.

A second limit is that each field can only be used once in the expression.

The next enhancement of this will optionally permit SoftSeeks (i.e. seek on the closest
value instead of on a specific value).

The next enhancement should also allocate memory for the right size of the Key,
instead of putting an arbitrary value of 250 bytes.

Here is an example of how to call the generic SearchExpr function:
{current index key expression is 'DTOS (CRT DATE)+CRT CODE'}
Tablel.SetKey;

Tablel.FieldByName ('CRT DATE') .AsString
Tablel.FieldByName ('CRT CODE') .AsString

'2/2/94"'; {assign search values}
'TO02"'; {assign search wvalues}

if SeekExpr (Tablel.Handle, [Tablel.FieldByName ('CRT DATE'),
Tablel.FieldByName ('CRT CODE')] ) then
ShowMessage ('Found!")
else
ShowMessage ('Not found!');

{note that the record pointer is now on the record it found, if any}
Here is the code for the generic search function:

function TDBFTestl.SeekExpr (hTable: HDBIcur;
aFlds: array of TField): boolean;

const
KeyBufSize = 250; {maximum size of key}

var
pRecBuf: pByte; {contains a record in memory}
pKeyBuf: pByte; {contains actual key}
TblProps: CURProps; {table properties }

rslt: DBIResult; {result of BDE call}



i: integer; {counter}

tmpPSZ: PCHAR;
tmpDate: LongInt;
begin

{get size of record buffer}
DbiGetCursorProps (hTable, TblProps):;

{allocate memory for record buffer}
GetMem (pRecBuf, TblProps.iRecBufSize * sizeof (BYTE))
GetMem (pKeyBuf, KeyBufSize); {allocate mem for key}

{initialize record buffer}
DbiInitRecord (hTable, pRecBuf);

{set search values in record buffer}

for i := 0 to High(aFlds) do
begin
{TStringField}
if (aFlds[i] is TStringField) then
begin

GetMem (tmpPSZ, Length (aFlds[i].AsString)+1);
StrPCopy (tmpPSZ, aFlds[i].AsString);

DbiPutField (hTable, {TTable}
aFlds[i] .FieldNo, {TField}
pRecBuf, {pointer to record buffer}
(tmpPSZ) ) ; {pointer to value}
FreeMem (tmpPSZ, Length(aFlds[i].AsString)+1);
end
{TDhateField}
else 1f (aFlds[i] is TDhateField) then
begin
tmpDate := Trunc (aFlds[i] .AsDateTime) ;
DbiPutField (hTable, {TTable}
aFlds[i] .FieldNo, {TField}
pRecBuf, {pointer to record buffer}
(@tmpDate)) ; {pointer to value}
end

end;

{create a key for the above values}
DbiExtractKey (hTable, pRecBuf, pKeyBuf);

{search using this key (stored in pKeyBuf) }
tablel.updatecursorpos;

rslt := DbiGetRecordForKey (hTable, True, 0, 0, pKeyBuf, nil);
tablel.refresh; {update data aware components}

if rslt <> 0 then

Result := False
else
result := True;
ShowRecord; {display new record number -- see below}

{free memory allocated for buffer}
FreeMem (pRecBuf, TblProps.iRecBufSize * sizeof (BYTE))



FreeMem (pKeyBuf, KeyBufSize);
end;

procedure TDBFTestl.ShowRecord;
{Show a dBase record number}
{NOTE: it assumes there is a label component named RecordNo.}
var
myrecprop: RECprops;
recno: integer;

begin
tablel.updatecursorpos;
recno := 0;
dbiGetRecord (tablel.handle, dbiNOLOCK, nil, @myrecprop):;
recno := myrecprop.iPhyRecNum;
RecordNo.Caption := inttostr (recno);

end;



Q: | want to resize my TDrawGrid columns so that the grid fits exactly on the form
even when the form is resized. This is what | am trying, but it is always off by a bit.

var
i, WidthOfCols: integer;
begin
WidthOfCols := 0;
for 1 := 1 to DrawGridl.ColCount - 1 do
WidthOfCols := DrawGridl.ColWidths([1i];
DrawGridl.ColWidths[0] := forml.width - WidthOfCols;
end;
What do | do?

A: You have it close, but no cigar.

var
i, WidthOfCols: integer;
begin
WidthOfCols := 0;
for 1 := 1 to DrawGridl.ColCount - 1 do
WidthOfCols := DrawGridl.ColWidths([i];
DrawGridl.ColWidths[0] :=
forml.ClientWidth - WidthOfCols - (DrawGridl.ColCount + 1);
end;

What this is doing is different from what you were doing on a few points.

1. The form's client area must be used instead of the form's width. This is because
we don't want the frame size figured into the value.

2. We need to subtract the lines of the grid itself. The width of a column excludes the
lines that define it. We use the ColCount + 1 because there are lines on both the left
and right sides of it.

Note: run this procedure on the form.create and the form.resize to keep everything
looking good.



Q: How o | use Access under Delphi?
A:  Guidlines for working with Access under Delphi/BDE/ODBC:

The ODBC driver provided with Access 2.0 (ODBCJT16.DLL with a file size of <65k) is
designed to work only within the Microsoft Office environment. To work with
ODBC/Access in Delphi, you need the Microsoft ODBC Desktop Driver
(ODBCJT16.DLL with a file size of approx 260Kk) kit, part# 273-054-030 available from
Microsoft Direct for $10.25US (post on WINEXT for where to get it in your country if you
are not in the US). It is also available on the Jan. MSDN, Level 2 (Development
Platform) CD4 \ODBC\X86 as part of the ODBC 2.1 SDK. Be aware that your
redistribution rights for the Desktop Drivers are pretty restricted by Microsoft. For info on
(and objections to) the restrictions post on the WINEXT forum.

You also need the following ODBC files.

Minimum:
ODBC.DLL 03.10.1994, Version 2.00.1510
ODBCINST.DLL  03.10.1994, Version 2.00.1510
ODBCINST.HLP  11.08.1993
ODBCADM.EXE  11.08.1993, Version 1.02.3129

Better:
ODBC.DLL 12.07.1994, Version 2.10.2401
ODBCINST.DLL  12.07.1994, Version 2.10.2401
ODBCINST.HLP  12.07.1994
ODBCADM.EXE  12.07.1994, Version 2.10.2309

The following steps will get you started in Delphi
1. Using the ODBC Administrator, set-up a datasource for your database. Be sure to

specify a path to your mdb file. For the purposes of this explanation we'll say that the

datasource name is MYDSN.
2. Load the BDE Configuration utility.
3. Select New Driver.
4. Give the driver a name (call it ODBC_MYDSN).
5. In the driver combo box select, "Microsoft Access Driver (*.mdb)

6. In the name combo box select MYDSN

7. Go to the Alias page.



8. Select New Alias.
9. Enter MYDSN for name.
10. For Alias Type, select ODBC_MYDSN.
11. In Delphi, drop a DataSource, Table, and DBGrid on your form.
12. Set DBGrid1.DataSource to DataSource1.
13. Set DataSource1.DataSet to Table1.
14. Set Table1.DatabaseName to MYDSN.
15. In the TableName property in Table1, click the downarrow, you will see the "Login"
dialog. Press OK, after a short pause you will see a dropdown list with all your table

names. Select one.

16. Set the Active property in Table1 to True, the data from your table will be displayed
in the grid.



It would incur a major compiler overhead. In order to efficiently generate code, the
compiler needs to have available a scalar type which encompasses the entire range of
possible values for all scalar types. If you wanted to accommodate both signed and
unsigned 32-bit values, that range would be -2147483548..4294967295, and that range

can't be contained in 32 bits.



Q: I'm having a little trouble trying to write a routine that will iterate through all the
directories and sub-directories of a given hard disk. What | need to to is calculate the
total file size of every file on the hard disk that matches a certain filespec. How do | do
this?

A: Here is the long version for Delphi:

{$SI-}

{SM 65000,0,1024}
program KillDir;
uses crt,dos;

type Stringl2 = string[l2];
var TotalSize : longint;
ThisSize : longint;

procedure UpString(var S:string);
var i:word;

begin
for i := 1 to length(S) do
S[i] := upcase(S[i]);
end;

function AbortIt:boolean;
var ch : char;
begin
AbortIt := false;
if not (KeyPressed) then Exit;
ch := readkey;
if ch = #0 then ch chr (ord (readkey) or $80);
if (ch = *C) or (ch = "X) or (ch = Q) or (ch
AbortIt := true;
end;

I~

#$1B) then

function GetSize(var F:file) :stringl2;
var RawSize : longint;
Size:string;

begin

Reset (F,1);

RawSize := FileSize (F);

Close (F);

ThisSize := RawSize;

if IOresult <> 0 then {nop};

if RawSize < 10000 then

begin
str (RawSize, Size);

end

else if RawSize < (1024*999) then

begin
str (RawSize div 1024, Size);
Size[length(Size)+1l] := 'K';
inc (Size[0]);

end

else

begin



str (RawSize div (1000*1024),Size);

Size[length (Size)+1l] := 'M';
Inc(Size[0]);
end;
while length(Size) < 4 do
begin
Size := ' '+Size;
end;
GetSize := Size;

end;

function SizeIt (Which:string) :byte;
var DirInfo:SearchRec;
f : file;
Attr,Result:word;
Size,Who:stringl2;
Current:string;
begin
Sizelt := 1;
if IOresult <> 0 then {nop};
GetDir (0, Current) ;
chdir (Which) ;
if IOresult <> 0 then Exit;
Who := '"*_.*';
findfirst (Who, $3F, DirInfo);
while DosError = 0 do

begin
if AbortIt then
begin
Sizelt := 2;
Exit;
end;
if (DirInfo.Name <> '.') and (DirInfo.Name <> '..') then
begin

Assign (F,DirInfo.Name) ;
GetFAttr (F,Attr);
if (Attr and Directory) <> 0 then

begin
Result := SizelIt(DirInfo.Name);
SizeIt := Result;
if Result <> 0 then Exit;
end
else
begin
SetFAttr (F,0);
Size := GetSize(F);
Who := DirInfo.Name+' '
writeln (Current+'\"'+Which, ' ', Who,' Size:',6Size);
TotalSize := TotalSize+ThisSize;
end;
end;
FindNext (DirInfo) ;
end;

if IOresult <> 0 then {nop};
ChDir (Current) ;
SizeIt := 0;

end;



var Where:string;
Current:string;
Yorn:string;
Result:word;

begin
TotalSize := 0;
writeln;
Writeln('Directory Sizer V1.01 Written by Michael Day as of 05 Sept 94'");
if ParamCount < 0 then
begin
writeln('Format is: FSIZE DIRNAME') ;
writeln('This program will find the size of all files and all
directories');
writeln('in and below the directory DIRNAME.');

halt(1l);
end;
Where := ParamStr(l);
UpString (Where) ;
if pos(Where,':') <> 0 then
begin
writeln('Sorry, you cannot size directories on another drive with this
program.');
writeln('Please move to that drive first.');
halt(2);
end;

if IOresult <> 0 then {nop};

GetDir (0,Current) ;

chdir (Where) ;

if IOresult <> 0 then
Result := 1

else
Result := 0;

chdir (Current) ;

if Result = 0 then
begin

writeln('This will find the size of ALL files and ALL directories in and

below:");
writeln (Current+'\'+Where) ;
Result := SizelIt (Where);

chdir (Current) ;

write('Total size of the directory');
write (Current+'\'+Where) ;
writeln (TotalSize) ;

if Result = 2 then

begin
writeln('Directory size operation terminated by the user.');
Halt (3);



end;
end;

if Result = 1 then

begin
writeln ('Error finding directory: ',Where);
writeln ('The directory probably does not exist.');
halt (4);
end;
end.

Here is the short version written for BP7 in DOS:

This program simply lists the names of the files, but you could change the output line do
accumulate sizes just as easily.

program search;
uses dos;
var i:integer;
d:dirstr; n:namestr; x:extstr;

procedure helpmsg;
begin

writeln ('SEARCH filespec [filespec]...'):;
end;

procedure dosearch(const d:string);
var sr:searchrec;

procedure dofilesearch;

begin
findfirst (d+n+x,archive+readonly, sr);
while doserror=0 do begin

writeln (d+sr.name) ; { THE output }
findnext (sr);
end;

end;

procedure dodirsearch;
begin
findfirst(d+'*.*',directory, sr);
while doserror=0 do begin
if (sr.attr and directory = directory)
and (sr.name[l]<>'."') then { ignores "."™ and ".." }
dosearch (d+sr.name+'\") ;
findnext (sr) ;
end;
end;

begin {dosearch}
dofilesearch;
dodirsearch;
end;



begin
if paramcount<l then helpmsg
else begin
for i:=1 to paramcount do begin
fsplit (paramstr(i),d,n,x);
dosearch (d) ;
end;
end;
end.



Q: How can | draw text right on the glyph of a speedbutton?

A: You can do it in the form's OnCreate event handler. Something like this:

WITH BitBtnl.Glyph, Canvas DO

BEGIN
R := BitBtnl.ClientRect;
InflateRect (R, -4, -4);
Width := R.Right - R.Left + 1;
Height := R.Bottom - R.Top + 1;
SetTextAlign (Handle, TA CENTER);
Font := Self.Font;

TextOut (Width DIV 2, 8, 'Foo');
TextOut (Width DIV 2, 24, 'Bar');
END;



Memol.Parent:= TabbedNoteBookl.Pages.Objects[TabbedNoteBookl.PageIndex] as
TWinControl;



TDBGrid

How do | set focus on a specific field on a TDBGrid?

How do | change the color of a grid cell in a TDBGrid?

How do | show the contents of a memo field in a TDBGrid?

How do | use a navigator control with multiple tdbGrids?

How do | resize my TDrawGrid columns so that the grid fits exactly on the form?
How do you tell which record and which field of a TDBGrid is current?

How do I change the color of a grid cell in a TDBGrid?

How do | surface the MouseDown Event?

How do | to one character type-ahead in a TDBGrid?

How do | calculate the width of a TDBGrid so that it will display all the fields?
How do | put components into a TDBGrid? (i.e. checkbox, combobox, etc.)

How can | tell which row and column is currently selected?
How do | setup the column list in code for a dynamically created TTable?




file management routines
unit FmxUtils;
interface

uses SysUtils, WinTypes, WinProcs, Classes, Consts;

type
EInvalidDest = class (EStreamError);
EFCantMove = class (EStreamError);

procedure CopyFile(const FileName, DestName: TFileName) ;

procedure MoveFile (const FileName, DestName: TFileName) ;

function GetFileSize (const FileName: string): LongInt;

function FileDateTime (const FileName: string): TDateTime;

function HasAttr(const FileName: string; Attr: Word): Boolean;

function ExecuteFile (const FileName, Params, DefaultDir: string;
ShowCmd: Integer): THandle;

implementation

uses Forms, ShellAPI;

const
SInvalidDest = 'Destination %s does not exist';
SFCantMove = 'Cannot move file %s';

procedure CopyFile(const FileName, DestName: TFileName) ;

var
CopyBuffer: Pointer; { buffer for copying }
TimeStamp, BytesCopied: Longint;
Source, Dest: Integer; { handles }
Destination: TFileName; { holder for expanded destination name }
const
ChunkSize: Longint = 8192; { copy in 8K chunks }
begin
Destination := ExpandFileName (DestName); { expand the destination path }
if HasAttr (Destination, faDirectory) then { if destination is a directory...
}
Destination := Destination + '\' + ExtractFileName (FileName); { ...clone
file name }
TimeStamp := FileAge (FileName); { get source's time stamp }
GetMem (CopyBuffer, ChunkSize); { allocate the buffer }
try
Source := FileOpen (FileName, fmShareDenyWrite); { open source file }

if Source < 0 then raise EFOpenError.Create (FmtLoadStr (SFOpenError,
[FileName])) ;
try
Dest := FileCreate (Destination); { create output file; overwrite
existing }
if Dest < 0 then raise EFCreateError.Create (FmtLoadStr (SFCreateError,
[Destination]));
try
repeat
BytesCopied := FileRead(Source, CopyBuffer”, ChunkSize); { read



chunk }
if BytesCopied > 0 then { if we read anything... }
FileWrite (Dest, CopyBuffer”, BytesCopied); { ...write chunk }
until BytesCopied < ChunkSize; { until we run out of chunks }
finally
FileClose (Dest); { close the destination file }
{ SetFileTimeStamp (Destination, TimeStamp);} { clone source's time
stamp }{!!!}
end;
finally
FileClose (Source); { close the source file }
end;
finally
FreeMem (CopyBuffer, ChunkSize); { free the buffer }
end;
end;

{ MoveFile procedure }
Moves the file passed in FileName to the directory specified in DestDir.
Tries to just rename the file. If that fails, try to copy the file and
delete the original.
Raises an exception if the source file is read-only, and therefore cannot

be deleted/moved.

procedure MoveFile (const FileName, DestName: TFileName) ;

var
Destination: TFileName;
begin
Destination := ExpandFileName (DestName); { expand the destination path }
if not RenameFile (FileName, Destination) then { try just renaming }
begin
if HasAttr (FileName, faReadOnly) then { if it's read-only... }
raise EFCantMove.Create (Format (SFCantMove, [FileName])); { we wouldn't
be able to delete it }
CopyFile (FileName, Destination); { copy it over to destination...}
DeleteFile (FileName); { ...and delete the original }
end;
end;

{ GetFileSize function }

{
Returns the size of the named file without opening the file. TIf the file
doesn't exist, returns -1.

function GetFileSize (const FileName: string): LongInt;
var
SearchRec: TSearchRec;
begin
if FindFirst (ExpandFileName (FileName), faAnyFile, SearchRec) = 0 then
Result := SearchRec.Size
else Result := -1;
end;



function FileDateTime (const FileName: string): System.TDateTime;
begin

Result := FileDateToDateTime (FileAge (FileName)) ;
end;

function HasAttr (const FileName: string; Attr: Word): Boolean;
begin

Result := (FileGetAttr (FileName) and Attr) = Attr;
end;

function ExecuteFile (const FileName, Params, DefaultDir: string;
ShowCmd: Integer): THandle;

var
zFileName, zParams, zDir: array[0..79] of Char;
begin
Result := ShellExecute (Application.MainForm.Handle, nil,
StrPCopy (zFileName, FileName), StrPCopy(zParams, Params),
StrPCopy (zDir, DefaultDir), ShowCmd) ;
end;

end.



&&



Q: How do | write programs using function pointers?
A:
unit Unitl;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls;

type
TForml = class (TForm)
Buttonl: TButton;
Editl: TEdit;
procedure FormCreate (Sender: TObject);
procedure ButtonlClick (Sender: TObject):;

private

{ Private declarations }
public

{ Public declarations }
end;

procedure Saylt(s: string);
var

Forml: TForml;

X: procedure(s: string);

implementation
{$R *.DFM}
procedure Saylt(s: string);
begin
showMessage (s) ;
end;

procedure TForml.FormCreate (Sender: TObject);
begin

X := SayIlt;
end;

procedure TForml.ButtonlClick (Sender: TObject):;
begin

x (Editl.text);
end;

end.



application.HelpCommand(help_quit, 0);



Q: Is there a way to use a Pascal string as a null terminated string?
A: Yes.

s[ord(s[0]) + 1] := #0; { Make it null terminated. }
WinExec(@s[1], sw_ShowNormal); { @s[1] is the last step. }



Q: How can | check to see if there is a disk in the "A" drive?

A:
var
ErrorMode: word;
begin
ErrorMode := SetErrorMode (SEM FailCriticalErrors);
try
if DiskSize (1) = -1 then
ShowMessage ('Drive not ready');
finally
SetErrorMode (ErrorMode) ;
end;

end;



They must be maintained indexes.



Q: How do | manipulate a TStringList in a DLL?
A:

{ Here is the DLL code. }
library Str DLL;

uses classes;

procedure AddToStrList(s: string; sList: TStringList); export;
begin

sList.add(s);
end;

exports
AddToStrList index 1;

begin
end.

{*************************************}

{ Here is how to use it. This is from a form that has
two pushbuttons: one to add a string to a string list,
and one to display the current string list in a list box.
The string to be added comes from a TEdit. Default names
are used. }

unit Unitl;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls;

type
TForml = class (TForm)
ListBoxl: TListBox;
Editl: TEdit;
Buttonl: TButton;
Button2: TButton;
procedure ButtonlClick (Sender: TObject);
procedure Button2Click (Sender: TObject);
private
{ Private declarations }
public
{ Public declarations }
end;

var
Forml: TForml;
MyStringList: TStringList;

implementation

{$SR *.DFM}



procedure AddToStrList(s: string; sList: TStringList);
far; external 'str dll';

procedure TForml.ButtonlClick (Sender: TObject);
begin

AddToStrList (editl.text, MyStringlList);
end;

procedure TForml.Button2Click (Sender: TObject);
var
i: integer;
begin
listboxl.items.clear;
listboxl.items.asign (MyStringList) ;
end;

begin
MyStringList := TStringList.create;
end.



{remove leading blanks (spaces)}
function LTrim(s: string): string;

var i: integer;

begin
i :=1;
while s[i] = ' ' do inc(1);
result := copy(s, i, length(s) - i + 1);

end;



{remove leading blanks (spaces)}

function LTrim(s: string): string;
var i: integer;
begin
i :=1;
while s[i] = ' ' do inc(i);
result := copy(s, i, length(s) - i + 1);
end;

{Supresses trailing blanks}

function RTrim(s: string): string;
begin
while s[length(s)] = ' ' do dec(s[0]);
result := s;
end;
function AllTrim(s: string): string;
begin
result := rTrim(1Trim(s));

end;



Q: How do | make a new component that has a string editor just like the one that comes
with the regular components?

A:
unit MyEds;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls;

type
TPropertyEditor = class (TButton)
private
{ Private declarations }
FStringStuff: TStrings;
protected
{ Protected declarations }
public
{ Public declarations }
constructor create (Aowner: TComponent); override;
destructor destroy; override;
procedure SetStrings(s: TStrings);
published
{ Published declarations }
property StringStuff: TStrings read FStringStuff write SetStrings;
end;

procedure Register;
implementation

constructor TPropertyEditor.create (AOwner: TComponent) ;

begin
inherited create (AOwner) ;
FStringStuff := TStringlist.create;
end;

destructor TPropertyEditor.destroy;

begin
FStringStuff.free; {Plugs the memory leak.}
inherited destroy;

end;

procedure TPropertyEditor.SetStrings(s: TStrings);
begin
if FStringStuff <> s then {This conditional is optional.}
FStringStuff.Assign(s);
end;

procedure Register;
begin

RegisterComponents ('Lloyd', [TPropertyEditor]):;
end;



end.



Q: ERROR in Complib.DCL while trying to initialize BDE
A: There are four(4) reasons this can occur when they try to run Delphi:

1) The IDAPI Section in the WIN.INI file is bad or missing. It should read something
like:

[IDAPI]
CONFIGFIL0O1=C:\IDAP\IDAPI.CFG
DLLPATH=C:\IDAPI

2) Share NOT loaded with correct parameters OR not loaded at all. It should be:
SHARE /F:4096 /L:40

Note: even if they have WFW and VSHARE it may be a good idea to load share
anyway.

3) COMPLIB.DCL could be corrupted. Copy a new copy from the CD .\RUNIMAGE\
DELPHINBIN\COMPLIB.DCL

4) The last resort could be and has been the case in a previous call or two... The
Windows install is bad and a re-install of Windows is recomended. If you suspect this
try to compare common .EXEs and .DLLs (e.g. -- VER.DLL, USER.EXE and
KERNEL.EXE).



| noticed a leak in my GUI resources and traced it back to TCustomDBGrid. A field
called FTitleFont (type TFont) is created but never destroyed. | added the following
lines to the TCustomDBGrid.Destroy (destructor) method, and the leak seems to be

plugged.

destructor TCustomDBGrid.Destroy;

begin
FDataLink.Free;
FDataLink := nil;

FIndicators.Free;

{Here are the two new lines.}
FTitleFont.Free;
FTitleFont:=Nil;

inherited Destroy;
ReleaseBitmap;
end;



huge numbers

By: Abe Timmerman; Alkmaar, The Netherlands
Send improvements to: A.Timmerman@beta.hsholland.nl

This unit uses an array of bytes to represent a LARGE number. The number is binairy-
stored in the array, with the Least Significant Byte (LSB) first and the Most Significant
Byte (MSB) last, like all Intel-integer types.

Arithmetic is not 10-based or 2-based, but 256-based, so that each byte represents one
(1) digit.

The Hugelnttype numbers are Signed Numbers.

When Compiled with the R+ directive, ADD and MUL wil generate an "Arithmetic
Overflow Error" (RunError(215)) when needed. Otherwise use the "HugelntCarry"
variable.

Use the "HugelntDiv0" variable to check on division by zero.

Use {$DEFINE Hugelnt_xx } or "Conditional defines" from the "Compiler options" for
sizing, where xx is 64, 32 or 16, otherwhise HugelntSize will be set to 8 bytes.

unit Hugelnts;
interface

const

{$IFDEF HugelInt 64 }
HugeIntSize = 64;

{SELSE} {SIFDEF HugelInt 32 }
HugeIntSize = 32;

{SELSE} {SIFDEF HugelInt 16 }
HugeIntSize = 16;

{SELSE}
HugeIntSize = 8;

{SENDIF}{SENDIF} {SENDIF}
HugeIntMSB = HugeIntSize-1;

type
HugeInt = array[0..HugeIntMSB] of Byte;

const
HugeIntCarry: Boolean = False;
HugeIntDiv0O: Boolean = False;

procedure HugeInt Min(var a: Hugelnt); -a }
procedure HugeInt Inc(var a: Hugelnt);

procedure HugeInt Dec(var a: Hugelnt);

AU
[
o o
I+
=



procedure HugeInt Add(a, b: HugeInt; var R: Hugelnt); { R := a
procedure HugeInt Sub(a, b: Hugelnt; var R: HugelInt); { R := a
procedure HugeInt Mul (a, b: HugelInt; var R: Hugelnt); { R := a
procedure HugeInt Div(a, b: Hugelnt; var R: HugelInt); { R := a
procedure HugeInt Mod(a, b: HugeInt; var R: Hugelnt); { R := a
function HugeInt IsNeg(a: Hugelnt): Boolean;

function HugeInt Zero(a: Hugelnt): Boolean;

function HugeInt Odd(a: Hugelnt): Boolean;

function HugeInt Comp(a, b: Hugelnt): Integer; {-1:a<b;
}

procedure HugeInt Copy(Src: HugelInt; var Dest: Hugelnt);{ Dest

procedure String2Hugelnt (AString:

string; wvar a: Hugelnt);
procedure Integer2HugelInt (AInteger: Integer;
procedure HugelInt2String(a: Hugelnt; var S:

implementation

var a: Hugelnt);
string);

procedure HugeInt Copy(Src: HugelInt; var Dest: Hugelnt);

{ Dest := Src }
begin

Move (Src, Dest, SizeOf (Hugelnt));

end; { HugeInt Copy }

function HugeInt IsNeg(a: Hugelnt): Boolean;
begin

HugeInt IsNeg := a[HugeIntMSB] and $80 > 0;
end; { HugeInt IsNeg }
function HugeInt Zero(a: Hugelnt): Boolean;
var i: Integer;
begin

HugelInt Zero := False;

for i := 0 to HugeIntMSB do

if a[i] <> 0 then Exit;

HugeInt Zero := True;
end; { HugelInt Zero }
function HugeInt Odd(a: HugelInt): Boolean;
begin

HugeInt Odd := al[0] and 1 > 0;
end; { HugeInt Odd }
function HugeInt HCD(a: HugelInt): Integer;
var i: Integer;
begin

i := HugeIntMSB;

while (i > 0) and (a[i] = 0) do Dec(i);

HugeInt HCD := i;

end; { HugeInt HCD }

procedure HugeInt SHL(var a: Hugelnt;

{ Shift "a" "Digits", digits (bytes) to the

"Digits" bytes will 'fall off'
Fill the LSB side with 0's }
var t: Integer;

Digits: Integer);

left,

on the MSB side

+
o oo

OO — —

* |

div
mod

0; l:a>b

:= Src }



b: Hugelnt;
begin
if Digits > HugeIntMSB then
FillChar (a, SizeOf (HugeInt), O0)
else if Digits > 0 then
begin
Move (a[0], a[Digits], HugeIntSize-Digits);
FillChar(a[0], Digits, 0);
end; { else 1if }
end; { HugeInt SHL }

procedure HugeInt SHR(var a: Hugelnt; Digits: Integer);
var t: Integer;
begin
if Digits > HugeIntMSB then
FillChar (a, SizeOf (HugeInt), O0)
else if Digits > 0 then
begin
Move (a[Digits], a[0], HugeIntSize-Digits);
FillChar (a[HugeIntSize-Digits], Digits, 0);
end; { else if }
end; { HugeInt SHR }

procedure HugeInt Inc(var a: Hugelnt);
{a:=a+ 11}
var
i: Integer;
h: Word;
begin
i :=0; h :=1;
repeat
h := h + a[il;
al[i] := Lo(h);
h := Hi(h);
Inc (i)
until (i > HugeIntMSB) or (h = 0);
HugeIntCarry := h > 0;
{SIFOPT R+ }
if HugeIntCarry then RunError (215);
{SENDIF}
end; { HugeInt Inc }

procedure HugeInt Dec(var a: Hugelnt);

{a:=a-11
var Minus 1: Hugelnt;
begin

{ this is the easy way out }
FillChar (Minus_ 1, SizeOf (Hugelnt), S$FF); { -1 }
HugeInt Add(a, Minus 1, a);

end; { HugeInt Dec }

procedure HugeInt Min(var a: Hugelnt);

{ a := -a }
var i: Integer;
begin
for i := 0 to HugeIntMSB do

al[i] := not ali];



HugeInt Inc(a);
end; { HugeInt Min }

function HugeInt Comp(a, b: Hugelnt): Integer;

{ a=D>b: ==0; a > b: ==1; a < b: ==-1}
var
A IsNeg, B IsNeg: Boolean;
i: Integer;
begin
A IsNeg := Hugelnt IsNeg(a);
B IsNeg := HugeInt IsNeg(b);
if A IsNeg xor B IsNeg then
if A IsNeg then HugeInt Comp := -1
else HugeInt Comp := 1
else
begin

if A IsNeg then HugeInt Min(a);
if B IsNeg then HugeInt Min(b);

i := HugeIntMSB;

while (i > 0) and (a[i] = b[i]) do Dec (i)

if A IsNeg then { both negative! }
if ali] > b[i] then HugeInt Comp := -1
else if a[i] < b[i] then HugeInt Comp := 1
else HugeInt Comp := 0

else { both positive }
if afi] > b[i] then HugeInt Comp := 1
else if a[i] < b[i] then HugeInt Comp := -1
else HugeInt Comp := 0;

end; { else }
end; { HugeInt Comp }

procedure HugeInt Add(a, b: HugelInt; var R: Hugelnt);
{ R :=a + Db}
var
i: Integer;
h: Word;
begin
h := 0;
for i := 0 to HugeIntMSB do
begin
h :=h + a[i] + b[i];
R[1i] := Lo (h);
h := Hi(h);
end; { for }
HugeIntCarry := h > 0;
{SIFOPT R+ }
if HugeIntCarry then RunError (215);
{SENDIF}
end; { HugeInt Add }

procedure HugeInt Sub(a, b: Hugelnt; var R: Hugelnt);
{ R:=a -Db}

var
i: Integer;
h: Word;
begin

HugeInt Min (b);



HugeInt Add(a, b, R);
end; { HugeInt Sub }

procedure HugeInt Mul (a, b:
{ R:=a * Db}
var
i, 9, ke
A end, B _end: Integer;
A IsNeg, B IsNeg: Boolean;
h: Word;
begin
A TIsNeg
B IsNeg
if A IsNeg
if B IsNeg

HugeInt; var R: Hugelnt)

Integer;

Iz

= HugelInt IsNeg(a)

HugeInt IsNeg (b)

then HugelInt Min

then HugelInt Min

A End := HugeInt HCD(a);

B _End HugeInt HCD(b);

FillChar (R, SizeOf (R), 0);

HugeIntCarry := False;

for i := 0 to A end do
begin

(a);
(b) ;

0 to B_end do
+ j) < HugeIntSize then

end; { if }
k := 1+ B End + 1;
while (k < HugeIntSize)
begin
h :(=h + R
o
)

and (h > 0) do

R[k]
h :=
Inc (k) ;
end; { while }
HugeIntCarry := h >
{$IFOPT R+}
if HugelIntCarry then RunError (215);
{SENDIF}
end; { for }
{ if all's well... }
if A IsNeg xor B IsNeg then HugeInt Min(R);
end; { HugeInt Mul }

0;

procedure HugeInt DivMod(var a: HugelInt; b: Hugelnt;

{ R :=adivb a := a mod b }
var
MaxShifts, s, g: Integer;
d, e: Hugelnt;

A IsNeg, B IsNeg: Boolean;

begin
if HugelInt Zero(b) then
begin
HugeIntDiv0 := True;

var R: Hugelnt);



Exit;

end{ 1if }
else HugelIntDiv0 := False;
A IsNeg := Hugelnt IsNeg(a);
B TIsNeg := HugelInt IsNeg(b);

if A IsNeg then HugeInt Min(a);
if B IsNeg then HugeInt Min(b);
if HugeInt Comp(a, b) < 0 then
{ a<b; no need to divide }
FillChar (R, SizeOf(R), 0)
else
begin
FillChar (R, SizeOf (R), 0);
repeat
Move (b, d, SizeOf (Hugelnt));
{ first work out the number of shifts }

MaxShifts := HugeInt HCD(a) - HugeInt HCD(b);
s := 0;
while (s <= MaxShifts) and (HugeInt Comp(a, d) >= 0) do
begin
Inc(s);

HugeInt SHL(d, 1);
end; { while }
Dec(s) ;
{ Make a new copy of b }
Move (b, d, SizeOf (Hugelnt));
{ Shift d as needed }
HugeInt ShL(d, S);
{ Use e = -d for addition, faster then subtracting d }
Move (d, e, SizeOf (Hugelnt));
HugeInt Min (e);
Q := 0;
{ while a >= d do a := a+-d and keep trek of # in Q}
while HugeInt Comp(a, d) >= 0 do
begin
HugeInt Add(a, e, a);
Inc(Q);
end; { while }
{ OOps!, one too many subtractions; correct }
if HugeInt IsNeg(a) then
begin
HugeInt Add(a, d, a);
Dec (Q) ;
end; { if }
HugeInt SHL(R, 1);
R[0] := Q;
until HugeInt Comp(a, b) < 0;
if A IsNeg xor B IsNeg then HugeInt Min(R);
end; { else }
end; { HugeInt Div }

procedure HugeInt DivModlO0O (var a: HugeInt; var R: Integer);
{ This works on positive numbers only

256-Based division: R := a mod 100; a:= a div 100; }
var
Q: Hugelnt;

S: Integer;



begin
R := 0; FillChar (Q, SizeOf(Q), 0);
S := HugelInt HCD(a);
repeat
r := 256*R + a[S];
HugeInt SHL(Q, 1);
Q[0] := R div 100;
R := R mod 100;
Dec (S) ;
until S < 0;
Move (Q, a, SizeOf(Q));
end; { HugeInt DivModl00 }

procedure HugeInt Div(a, b: HugelInt; var R: Hugelnt);
begin

HugeInt DivMod(a, b, R);
end; { HugeInt Div }

procedure HugeInt Mod(a, b: HugeInt; var R: Hugelnt);
begin

HugeInt DivMod(a, b, R);

Move (a, R, SizeOf (Hugelnt)):;
end; { HugeInt Mod }

procedure HugeInt2String(a: Hugelnt; var S: string);

function Strl00(i: Integer): string;
begin
Strl00 := Chr(i div 10 + Ord('0')) + Chr(i mod 10 + Ord('0'));
end;{ Strl00 }
var
R: Integer;
Is Neg: Boolean;
begin
S = '";
Is Neg := HugeInt IsNeg(a);
if Is Neg then HugeInt Min(a);
repeat
HugeInt DivModl00 (a, R);
Insert (Strl00(R), S, 1);
until HugeInt Zero(a) or (Length(S) = 254);
while (Length(S) > 1) and (S[1] = '0') do Delete(s, 1, 1);
if Is Neg then Insert('-', S, 1);

end; { HugeInt2String }

procedure String DivMod256(var S: string; var R: Integer);
{ This works on Positive numbers Only

10(00) -based division: R := S mod 256; S := S div 256 }
var Q: string;
begin
FillChar (Q, SizeOf(Q), O0);
R := 0;
while S <> '' do
begin
R := 10*R + Ord(S[1]) - Ord('0'"); Delete(s, 1, 1);
Q := Q + Chr(R div 256 + Ord('0"));
R := R mod 256;

end; { while }



while (Q <> '"') and (Q[1l] = '0') do Delete(Q, 1, 1);
S = Q7
end; { String DivMod256 }

procedure String2HugeInt (AString: string; var a: Hugelnt);
var
i, h: Integer;
Is Neg: Boolean;
begin
if AString = '' then AString := '0';
Is Neg := AString[l] = '-'";
if Is Neg then Delete(Astring, 1, 1);
i := 0;
while (AString <> '') and (i <= HugeIntMSB) do
begin
String DivMod256 (AString, h);
ali] h;
Inc (1) ;
end; { while }
if Is_Neg then Hugelnt Min(a);
end; { String2HugelInt }

procedure Integer2HugelInt (AInteger: Integer; var a: Hugelnt);
var Is Neg: Boolean;

begin
Is Neg := Alnteger < 0;
if Is _Neg then AlInteger := -Alnteger;

FillChar (a, SizeOf (HugelInt), O0);

Move (AInteger, a, SizeOf (Integer));

if Is Neg then Hugelnt Min(a);
end; { Integer2Hugelnt }

end.



Borland style buttons

The BORBTNS.PAS unit contains two Delphi components, TBorCheck and TBorRadio
which implement the BWCC style CheckBox and RadioButton. | loved the BWCC style
buttons so | decided to reproduce them in Delphi. | didn't test them very much, but as far
as | know they work properly. However I've enclosed the source code, so you can
modify them as you prefer.

The Grouplndex property in TBorRadio allow you to define groups: all the buttons which
share the same Grouplndex are mutually exclusive.

Freeware, enjoy them!
(and if you're very happy with them, send me a postcard of your city)

Enrico Lodolo

via F.Bolognese 27/3
40129 Bologna

Italy

CompuServe: 100275,1255
Internet: Idic18k1@bo.nettuno.it

{ v. 1.00 April, 8 1995 }
{ v. 1.01 July, 6 1995 Controls refreshed when caption changes }
e )
{ Copyright Enrico Lodolo }
{ via F.Bolognese 27/3 - 440129 Bologna - Italy }
{ CIS 100275,1255 - Internet 1ldlcl8kl@bo.nettuno.it }

unit BorBtns;
interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, Menus;

type

TBorCheck = class (TCustomControl)

private
FDown:Boolean;
FState:TCheckBoxState;
FFocused:Boolean;
FCheckColor:TColor;

protected
constructor Create (AOwner: TComponent); override;
procedure Paint; override;
procedure MouseDown (Button: TMouseButton; Shift: TShiftState;

X, Y: Integer); override;



procedure MouseUp (Button: TMouseButton; Shift: TShiftState;
X, Y: Integer); override;
procedure MouseMove (Shift:

override;

TShiftState;X, Y: Integer);

procedure
procedure
procedure
procedure
procedure
function

procedure
function

procedure

KeyDown (var Key:Word;Shift:TShiftSTate); override;
KeyUp (var Key:Word;Shift:TShiftSTate); override;
SetDown (Value:Boolean) ;

SetState (Value:TCheckBoxState) ;

SetChecked (Value:Boolean) ;

GetChecked:Boolean;

SetCheckColor (Value:TColor) ;

GetCaption: TCaption;

SetCaption (const Value:TCaption);

DoEnter; override;
DoExit; override;

procedure
procedure
public
published
property
property

Caption:TCaption read GetCaption write SetCaption;
CheckColor:TColor read FCheckColor write SetCheckColor
default clBlack;

Checked:Boolean read GetChecked write SetChecked
default False;

Down:Boolean read FDown write SetDown default False;
DragCursor;

DragMode;

Font;

ParentFont;

PopupMenu;

ShowHint;

State:TCheckBoxState read FState write SetState
default cbUnchecked;

TabOrder;

TabStop;

OnClick;

OnDragDrop;

OnDragOver;

OnEndDrag;

OnKeyDown;

OnKeyPress;

OnKeyUp;

OnMouseDown;

OnMouseMove;

OnMouseUp;

property

property
property
property
property
property
property
property
property

property
property
property
property
property
property
property
property
property
property
property
property
end;

type

TBorRadio

private
FDown:Boolean;
FChecked:Boolean;
FFocused:Boolean;
FCheckColor:TColor;
FGroupIndex:Byte;
procedure TurnSiblingsOff;

protected
constructor Create (AOwner:
procedure Paint; override;

class (TCustomControl)

TComponent) ; override;



procedure MouseDown (Button: TMouseButton; Shift: TShiftState;
X, Y: Integer); override;
procedure MouseUp (Button: TMouseButton; Shift: TShiftState;
X, Y: Integer); override;
procedure MouseMove (Shift: TShiftState;X, Y: Integer);
override;
procedure KeyDown (var Key:Word;Shift:TShiftSTate); override;
procedure KeyUp (var Key:Word;Shift:TShiftSTate); override;
function GetCaption: TCaption;
procedure SetCaption (const Value:TCaption);
procedure SetDown (Value:Boolean);
procedure SetChecked (Value:Boolean);
procedure SetCheckColor (Value:TColor);
procedure DoEnter; override;
procedure DoExit; override;
public
published
property Caption:TCaption read GetCaption write SetCaption;
property CheckColor:TColor read FCheckColor write SetCheckColor
default clBlack;
property Checked:Boolean read FChecked write SetChecked
default False;
property Down:Boolean read FDown write SetDown default False;
property DragCursor;
property DragMode;
property Font;
property GroupIndex:Byte read FGroupIndex write FGroupIndex
default 0;
property ParentFont;
property PopupMenu;
property ShowHint;
property TabOrder;
property TabStop;
property OnClick;
property OnDragDrop;
property OnDragOver;
property OnEndDrag;
property OnKeyDown;
property OnKeyPress;
property OnKeyUp;
property OnMouseDown;
property OnMouseMove;
property OnMouseUp;
end;

procedure Register;

implementation

constructor TBorCheck.Create (AOwner: TComponent) ;
begin

inherited Create (AOwner) ;

Width := 98;



Height := 20;

ParentColor:=False;

Color:=clBtnFace;
end;

const BW=12;

procedure TBorCheck.Paint;
var BL,BT,BR,BB:Integer;
TX,TY,TW, TH: Integer;
Rect:TRect;
begin
Canvas.Font:=Font;
with Canvas do

begin
BT:=(Height div 2)-(BW div 2);
BB:=BT+BW;
BL:=1;
BR:=BW+1;

Brush.Color:=clBtnFace;
if not FDown then
begin
Pen.Color:=clBtnFace;
Rectangle (BL, BT, BR,BB) ;
Pen.Color:=clBtnHighLight;
MoveTo (BL, BB) ;
LineTo (BL,BT) ;
LineTo (BR,BT) ;
Pen.Color:=clBtnShadow;
LineTo (BR, BB) ;
LineTo (BL, BB) ;
end
else
begin
Pen.Color:=clBlack;
Pen.Width:=2;
Rectangle (BL+1,BT+1,BR+1,BB+1) ;
Pen.Width:=1;
end;
TX:=BR+5;
TY:=(Height div 2)+ (Font.Height div 2)-1;
TW:=TextWidth (Caption) ;
TH:=TextHeight (Caption) ;
TextOut (TX, TY,Caption) ;
case State of
cbChecked:
begin
Pen.Color:=FCheckColor;
Pen.Width:=1;
Dec (BT) ; Dec (BB) ;
MoveTo (BL+2, BT+BW div 2+1);
LineTo (BL+2,BB-1);
MoveTo (BL+3,BT+BW div 2);
LineTo (BL+3,BB-2);
MoveTo (BL+2,BB-1)
LineTo (BR-2,BT+3) ;
MoveTo (BL+3,BB-1)

’

’



LineTo (BR-1,BT+3) ;
end;
cbGrayed:
begin
if Down then
begin
Pen.Color:=clBtnFace;
Brush.Color:=clBtnFace;
Rectangle (BL+2,BT+2,BR-1,BB-1);
end;
Brush.Color:=clBtnShadow;
Rectangle (BL+2,BT+2,BR-1,BB-1) ;
end;
end;
Brush.Color:=clBtnFace;
Rect:=Bounds (TX-1,TY, TW+3, TH+1) ;
FrameRect (Rect) ;
if FFocused then
DrawFocusRect (Rect) ;
end;
end;

function TBorCheck.GetCaption:TCaption;
var Len:Integer;

begin
Len := GetTextBuf (@Result, 256);
Move (Result[0], Result[l], Len);
Result[0] := Char(Len);

end;

procedure TBorCheck.SetCaption (const Value:TCaption);
var Buffer: array[0..255] of Char;
begin
if GetCaption <> Value then
SetTextBuf (StrPCopy (Buffer,Value));
Invalidate;
end;

procedure TBorCheck.SetDown (Value:Boolean) ;

begin
if FDown<>Value then
begin
FDown:=Value;
Paint;
end;
end;

procedure TBorCheck.SetState (Value:TCheckBoxState) ;
begin
if FState<>Value then
begin
FState:=Value;
Paint;
Click;
end;
end;



function TBorCheck.GetChecked: Boolean;

begin
Result:=State=cbChecked;
end;

procedure TBorCheck.SetChecked (Value:Boolean) ;

begin
if Value then State := cbChecked
else State := cbUnchecked;

end;

procedure TBorCheck.SetCheckColor (Value:TColor) ;

begin
FCheckColor:=Value;
Paint;

end;

procedure TBorCheck.DoEnter;
begin
inherited DoEnter;
FFocused:=True;
Paint;
end;

procedure TBorCheck.DoExit;
begin
inherited DoExit;
FFocused:=False;
Paint;
end;

procedure TBorCheck.MouseDown (Button: TMouseButton; Shift: TShiftState; X, Y:
Integer);
begin

SetFocus;

FFocused:=True;

inherited MouseDown (Button, Shift, X, Y);

MouseCapture:=True;

Down:=True;
end;
procedure TBorCheck.MouseUp (Button: TMouseButton; Shift: TShiftState; X, Y:
Integer);
begin

MouseCapture:=False;

Down:=False;

if (X>=0) and (X<=Width) and (Y>=0) and (Y<=Height) then

Checked:=not Checked;

inherited MouseUp (Button, Shift, X, Y);
end;
procedure TBorCheck.MouseMove (Shift: TShiftState;X, Y: Integer);

begin
if MouseCapture then

Down:=(X>=0) and (X<=Width) and (Y>=0) and (Y<=Height);

inherited MouseMove (Shift,X,Y);
end;



procedure TBorCheck.KeyDown (var Key:Word;Shift:TShiftSTate);
begin

if Key=vk Space then Down:=True;

inherited KeyDown (Key, Shift);
end;

procedure TBorCheck.KeyUp (var Key:Word;Shift:TShiftSTate);
begin
if Key=vk Space then
begin
Down:=False;
Checked:=not Checked;
end;
end;

constructor TBorRadio.Create (AOwner: TComponent) ;

begin
inherited Create (AOwner) ;
Width := 98;
Height := 20;
ParentColor:=False;
Color:=clBtnFace;

end;

procedure TBorRadio.Paint;

var BL,BT,BR,BB,BM:Integer;
TX,TY, TW, TH: Integer;
CX,CY:Integer;
Rect:TRect;

begin
Canvas.Font:=Font;
with Canvas do
begin
BM:=BW div 2;
BT:=(Height div 2)-BM;

BB :=BT+BW;
BL:=1;
BR:=BW+1;

Brush.Color:=clBtnFace;

if Down then

begin
Pen.Color:=clBlack;
MoveTo (BL+BM, BT) ;
LineTo (BL, BT+BM) ;
LineTo (BL+BM, BB) ;
LineTo (BR, BT+BM) ;
LineTo (BL+BM, BT) ;
MoveTo (BL+BM, BT+1) ;
LineTo (BL+1,BT+BM) ;



LineTo (BL+BM, BB-1) ;
LineTo (BR-1,BT+BM) ;
LineTo (BL+BM, BT+1) ;
end
else
begin
Pen.Color:=clBtnFace;
Rectangle (BL, BT, BR, BB) ;
if Checked then Pen.Color:=clBtnShadow
else Pen.Color:=clBtnHighLight;
MoveTo (BL+BM, BT) ;
LineTo (BL, BT+BM) ;
LineTo (BL+BM, BB) ;
if Checked then Pen.Color:=clBtnHighLight
else Pen.Color:=clBtnShadow;
LineTo (BR, BT+BM) ;
LineTo (BL+BM, BT) ;
end;
if Checked then
begin
Pen.Color:=CheckColor;
CX:=BL+BM;CY :=BT+BM;
MoveTo (CX-1,CY-1);
LineTo (CX+2,CY-1);
MoveTo (CX-2,CY) ;
LineTo (CX+3,CY) ;
MoveTo (CX-1,CY+1) ;
LineTo (CX+2,CY+1) ;
MoveTo (CX,CY=-2) ;
LineTo (CX,CY+3);
end;
TX:=BR+5;
TY:=(Height div 2)+ (Font.Height div 2)-1;
TW:=TextWidth (Caption) ;
TH:=TextHeight (Caption) ;
TextOut (TX, TY,Caption) ;
Brush.Color:=clBtnFace;
Rect:=Bounds (TX-1,TY, TW+3, TH+1) ;
FrameRect (Rect) ;
if FFocused then
DrawFocusRect (Rect) ;
end;
end;

function TBorRadio.GetCaption:TCaption;
var Len:Integer;
begin
Len := GetTextBuf (@Result, 256);
Move (Result[0], Result[l], Len);
Result[0] := Char(Len);
end;

procedure TBorRadio.SetCaption (const Value:TCaption);
var Buffer: array[0..255] of Char;
begin
if GetCaption <> Value then
SetTextBuf (StrPCopy (Buffer,Value))



Invalidate;
end;

procedure TBorRadio.SetDown (Value:Boolean) ;

begin
if FDown<>Value then
begin
FDown:=Value;
Paint;
end;
end;

var i:Integer;
Sibling: TBorRadio;
begin
if Parent <> nil then
for 1:=0 to Parent.ControlCount-1 do
if Parent.Controls[i] is TBorRadio then
begin
Sibling:=TBorRadio (Parent.Controls[i]);
if (Sibling<>Self) and
(Sibling.GroupIndex=GroupIndex) then
Sibling.SetChecked (False) ;
end;
end;

procedure TBorRadio.SetChecked(Value: Boolean);
begin
if FChecked <> Value then
begin
TabStop:=Value;
FChecked:=Value;
if Value then
begin
TurnSiblingsOff;
Click;
end;
Paint;
end;
end;

procedure TBorRadio.SetCheckColor (Value:TColor);
begin

FCheckColor:=Value;

Paint;
end;

procedure TBorRadio.DoEnter;
begin
inherited DoEnter;
FFocused:=True;
Checked:=True;
Paint;
end;

procedure TBorRadio.DoExit;



begin
inherited DoExit;
FFocused:=False;
Paint;

end;

procedure TBorRadio.MouseDown (Button: TMouseButton; Shift: TShiftState; X, Y:
Integer);
begin
SetFocus;
FFocused:=True;
inherited MouseDown (Button, Shift, X, Y);
MouseCapture:=True;
Down:=True;
end;

procedure TBorRadio.MouseUp (Button: TMouseButton; Shift: TShiftState; X, Y:
Integer);
begin

MouseCapture:=False;

Down:=False;

if (X>=0) and (X<=Width) and (Y>=0) and (Y<=Height)

and not Checked then Checked:=True;

inherited MouseUp (Button, Shift, X, Y);

end;

procedure TBorRadio.MouseMove (Shift: TShiftState;X, Y: Integer);
begin
if MouseCapture then
Down:=(X>=0) and (X<=Width) and (Y>=0) and (Y<=Height);
inherited MouseMove (Shift,X,Y);
end;

procedure TBorRadio.KeyDown (var Key:Word;Shift:TShiftSTate);
begin

if Key=vk Space then Down:=True;

inherited KeyDown (Key, Shift);
end;

procedure TBorRadio.KeyUp (var Key:Word;Shift:TShiftSTate);
begin
if Key=vk Space then
begin
Down:=False;
if not Checked then Checked:=True;
end;
end;

procedure Register;

begin
RegisterComponents ('Samples', [TBorCheck, TBorRadio]) ;

end;

end.



Q: How do | terminate all running tasks?

A: Below is some code that will help if you want to terminate ALL tasks, no questions
asked.

Note: To terminate ONE app, see FindWindow.

A word of caution, before you run this for the first time, make sure that you save it and
anything else that may have some pending data.

procedure TForml.ButtonKillAllClick (Sender: TObject);

var
pTask : PTASKENTRY;
Task : Bool;
ThisTask: THANDLE;
begin
GetMem (pTask, SizeOf (TTASKENTRY));
pTask”.dwSize := SizeOf (TTASKENTRY) ;
Task := TaskFirst (pTask);
while Task do
begin
if pTask”.hInst = hInstance then
ThisTask := pTask”.hTask
else
TerminateApp (pTask”.hTask, NO_UAE BOX);
Task := TaskNext (pTask);
end;

TerminateApp (ThisTask, NO_UAE BOX);
end;



bitmap pasting error

After pasting an image, which was copied to the clipboard from MS PaintBrush, into a
TDBImage control, the image is not saved into the table when the record is posted.
This is because the TBlobField doesn't support saving of MetaFile's (see explanation
below).

Workaround:

Change the code in DBCTRLS.PAS (TDBImage.PasteFromClipboard - approximately
line # 2180) which reads

Picture.Assign (Clipboard) ;

to instead read

Picture.Bitmap.Assign (Clipboard) ;



method assignment

Q: How do | assign a method to the event of a dynamically created object?

A:
unit Unitl;
interface
uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics,
Forms, Dialogs, StdCtrls;
type
TForml = class (TForm)
Buttonl: TButton;
Button2: TButton;
procedure ButtonlClick (Sender: TObject);
procedure Button2Click (Sender: TObject);
private
{ Private declarations }
public
{ Public declarations }
end;
var
Forml: TForml;
implementation
{SR *.DFM}
procedure TForml.ButtonlClick (Sender: TObject);
var
t: TButton;
begin
t := TButton.create (application);
t.parent := forml;
t.caption := 'New Button';
t.OnClick := Button2.0nClick;
t.show;
end;
procedure TForml.Button2Click (Sender: TObject):;

begin

showMessage ( (sender as TButton) .caption);

end;

end.

Controls,



humor:

Microsoft
Dr. Seuss

Engineering
rogrammin

Tech Support
Misc.



Star Trek Lost Episodes" transcript.

<Pichard> "Mr. LaForge, have you had any success with your attempts at finding a
weakness in the Borg? And Mr. Data, have you been able to access their command
pathways?"

<Geordi>"Yes, Captain. In fact, we found the answer by searching through our archives
on late Twentieth-century computing technology."

<Geordi presses a key, and a logo appears on the computer screen.>
<Riker looks puzzled.> "What the hell is 'Microsoft'?"

<Data turns to answer.> "Allow me to explain. We will send this program, for some
reason called 'Windows', through the Borg command pathways. Once inside their root
command unit, it will begin consuming system resources at an unstoppable rate."

<Pichard> "But the Borg have the ability to adapt. Won't they alter their processing
systems to increase their storage capacity?"

<Data> "Yes, Captain. But when 'Windows' detects this, it creates a new version of itself
known as an 'upgrade’. The use of resources increases exponentially with each
iteration. The Borg will not be able to adapt quickly enough. Eventually all of their
processing ability will be taken over and none will be available for their normal
operational functions."

<Pichard> "Excellent work. This is even better than that 'unsolvable geometric shape'
idea."

... .. 15 Minutes Later . . .

><Data> "Captain, We have successfully installed the 'Windows' in the command
>unit and as expected it immediately consumed 85% of all resources. We however

>have not received any confirmation of the expected 'upgrade'.

<Geordi> "Our scanners have picked up an increase in Borg storage and
CPU capacity to compensate, but we still have no indication of an
'upgrade' to compensate for their increase."

<Pichard> "Data, scan the history banks again and determine if their is something we
have missed."

<Data> "Sir, | believe their is a reason for the failure in the 'upgrade'.
Apparently the Borg have circumvented that part of the plan by not sending in their
registration cards.



<Riker> "Captain we have no choice. Requesting permission to begin emergency
escape sequence 3F . . ."

<Geordi, excited> "Wait, Captain | just detected their CPU capacity has suddenly
dropped to 0% !"

<Pichard> "Data, what does your scanners show?"

<Data> "Apparently the Borg have found the internal 'Windows' module named
‘Solitaire' and it has used up all the CPU capacity."

<Pichard> "Lets wait and see how long this 'solitaire' can reduce their functionality."
... .. Two Hours Pass . . .

<Riker> "Geordi what's the status on the Borg?"

<Geordi> "As expected the Borg are attempting to re-engineer to compensate for
increased CPU and storage demands, but each time they successfully increase
resources | have setup our closest deep space monitor beacon to transmit more
'windows' modules from something called the 'Microsoft fun-pack'.

<Pichard> "How much time will that buy us ?"

<Data> "Current Borg solution rates allow me to predicate an interest time span of 6
more hours."

<Geordi> "Captain, another vessel has entered our sector."
<Pichard> "ldentify."
<Data> "It appears to have markings very similar to the 'Microsoft' logo"

<Over the speakers> "THIS IS ADMIRAL BILL GATES OF THE
MICROSOFT FLAGSHIP

MONOPOLY. WE HAVE POSITIVE CONFIRMATION OF UNREGISTERED
SOFTWARE IN THIS

SECTOR. SURRENDER ALL ASSETS AND WE CAN AVOID ANY
TROUBLE. YOU HAVE 10

SECONDS"

<Data> "The alien ship has just opened its forward hatches and released thousands of
humanoid shaped objects."

<Pichard> "Magnify forward viewer on the alien craft"



<Riker> "Good God captain! Those are humans floating straight toward the
Borg ship with no life support suits ! How can they survive the tortures of deep space ?!"

<Data> "I don't believe that those are humans sir, if you will look closer

| believe you will see that they are carrying something recognized by twenty-first century
man as doe skin leather briefcases, and wearing

Armani suits"

<Riker and Pichard together horrified> "Lawyers "

<Geordi> "It can't be. All the Lawyers were rounded up and sent hurtling into the sun in
2017 during the Great Awakening."

<Data> "True, but apparently some must have survived."

<Riker> "They have surrounded the Borg ship and are covering it with all types of
papers."

<Data> "I believe that is known in ancient vernacular as 'red tape' it often proves fatal."
<Riker> "They're tearing the Borg to pieces !"

<Pichard> "Turn off the monitors. | can't stand to watch, not even the
Borg deserve that."

<Pichard> "Mr. LaForge, what's the current status on the Borg ship?"

<Geordi> "They are still undergoing heavy attack from Microsoft's Shark team. Wait!
They lawyers backing off...It looks like the Borg must have negotiated a site wide
license."

<Pichard>"Damn! Data, what's your analysis?"

<Data> "Sir, | am reading some interesting program changes in the Borg's command
pathways. They are spending an enourmous amount of effort evaluating a program
left by Microsoft."

<Riker> "What are you talking about Data?"

<Data> "It appears to be a new program, | am trying to isolate it's description.
The Microsoft registry reports the new program as Win stardate 7451332 Build 455."

<Pichard> "Well, that should take care of them."

<Geordi> "l don't think so sir. The Borg have managed to isolate this new program to



only a small part of their collective intelligence. They are referencing this node as an

'evaluation team'.
<Pichard> "How long until the program proliferates Mr. LaForge?"

<Geordi> "It's hard to tell Captain. But from the amount of sub-space communication
being transmitted to the Microsoft space station 'Help Desk’, I'd say it will be a while

before th..."

<Data> "Sir, the Borg ship is rapidly regaining resources. | estimate 2 minutes before
they will be able to attack."

<Pichard> "Options"
<Riker> "We could offer this new Windows to other members of the Borg."

<Pichard> "Sell them a Beta version of a product? That goes against the Prime
Directive. Besides, Number 1, it would take too long to install...we don't have the time."

<Geordi> "I've got it!!l Data, insert this program into the Borg's command pathways."

<Data> "Very interesting...Initiating transfer...Sir, the Borg have completely stopped
working on restoring their systems."

<Riker> "What is it? What did you do?"

<Pichard> "It's going to be OK Number 1. <grin> Geordi, did you send them the
program | think you sent?"

<Geordi> "Yes sir, Netscape v1.1



MICROSOFT UNVEILS NEW JOE-BOB(tm) SOFTWARE

REDMOND, Wash. -- April 10, 1995 -- Microsoft today announced the release of Joe-
Bob(tm), a new software package that the company hopes will open up a huge
untapped computer market. With the motto "The software for the rest of y'all(tm)," Joe-
Bob reaches out to the same demographic group that buys

4x4s, supports the gun lobby, and drinks Miller Lite.

"Computers have been commonly seen as for leftists and intellectuals," explains
Microsoft spokesperson Willy Maclean, "but we've recently seen people like Newt
Gingrinch embracing new technology -- the time is right for the rest of America to get
wired!"

Instead of a desktop or office metaphor, Joe-Bob(tm) puts the user in a garage. "Click
on the Lynyrd Skynyrd tapes, and get a complete music library in digital stereo. Click on
the pinups, and get hooked up to the Internet's hottest gifs," the promotional materials
explain.

The package does not include a word processor or spreadsheet, but does have
software that keeps track of the football season, lists the best roadhouses between
Florida and Nevada, and can even order spareribs and beer at the click of a mouse.

"This is righteous software, man," says beta-tester Billy Grugg. "It thinks like | think."
Brad Cunningham agrees: "l take it everywhere," he says, pointing to a Pentium laptop
racked under his 12-gauge in his pickup truck.

Microsoft is offering desktop users a special clip-on beer holder for their monitors.

"Look at what's popular out there," says Microsoft Chairman Bill Gates.
"Four of the top-10 Usenet newsgroups are about sex, and splatter video games like
Doom and Mortal Kombat are bestsellers. We're just catering to a demand, that's all."

Microsoft is reportedly distributing badges and bumper stickers saying things like "Joe-
Bob: Make Your Disk Hard," "Go Microsoft -- Go Intel -- Go America," and "QuickTime is
for Pinko Hippie Wimps."

Apple declined to comment.



What if people knew (only) as much about the cars they buy, as they know about the
computers they buy?

General Motors doesn't have a help line for people who don't know how to drive.
Imagine if they did ... (Think of a computer software or hardware helpline)

HelpLine: "General Motors HelpLine, how can | help you?"

Customer: "l got in my car and closed the door and nothing happened!"

HelpLine: "Did you put the key in the ignition slot and turn it?"

Customer: "What's an ignition?"

HelpLine: "It's a starter motor that draws current from your battery and turns over the
engine."

Customer: "Ignition? Motor? Battery? Engine? How come | have to know all these
technical terms just to use my car?"

HelpLine: "General Motors HelpLine, how can | help you?"

Customer: "My car ran fine for a week and now it won't go anywhere!"

HelpLine: "Is the gas tank empty?"

Customer: "Huh? How do | know?"

HelpLine: "There's a little gauge on the front panel with a needle and markings from 'E'
to 'F'. Where is the needle pointing?"

Customer: "It's pointing to 'E'. What does that mean?"

HelpLine: "It means you have to visit a gasoline vendor and purchase some more
gasoline. You can install it yourself or pay the vendor to install it for you."
Customer: "What? | paid $12,000 for this car! Now you tell me that | have to keep
buying more components? | want a car that comes with everything built in!"

HelpLine: "General Motors HelpLine, how can | help you?"

Customer: "Your cars suck!"

HelpLine: "What's wrong?"

Customer: "It crashed, that's what wrong!"

HelpLine: "What were you doing?"

Customer: "l wanted to run faster, so | pushed the accelerator pedal all the way to the
floor. It worked for a while and then it crashed and it won't start now!"

HelpLine: "It's your responsibility if you misuse the product. What do you expect us to
do about it?"

Customer: "l want you to send me one of the latest version that doesn't crash any
more!"

HelpLine: "General Motors HelpLine, how can | help you?"

Customer: "Hi, | just bought my first car, and | chose your car because it has automatic
transmission, cruise control, power steering, power brakes, and power door locks."
HelpLine: "Thanks for buying our car. How can | help you?"

Customer: "How do | work it?"



HelpLine: "Do you know how to drive?"

Customer: "Do | know how to what?"

HelpLine: "Do you know how to drive?"

Customer: "I'm not a technical person. | just wantto go places in my car!



Billy the Chilly
(With Apologies to Dr. Seuss)

In a far away island of Redy-Mond-Ross,

Billy the Chilly was king of the DOS.

A nice little DOS with a great big Window

Where programs of all sorts would come and would go.
The vendors flocked to it -- for none were afraid.

From that DOS and that Window much money they made.

They did until Billy, the king of that clutch,

Decided the vendors were making too much.

“I'm ruler," said Billy, "of all that | own.

But | don't own enough," he let out with a groan.

"l own the DOS and the Window -- that's true.

Then how come my spreadsheet is still number two?
| make the most money," he said with no glee.

"But no one should make any money but me.

| must have it all, whether Big Blue or clone.

What a king! I'd be ruler of all that | own."

So Billy the Chilly his minions did hail,

And Billy, the Chilly king, sent some e-mail;

He ordered nine vendors to give him their code --

To put it in DOS, not to lighten their load.

"If you give me your programs," he said with a smile,
"When [ ruin your market, I'll do it in style."

Then Billy put all of those programs in DOS,

And said "Of defraggers and backups, I'm Boss."

"All mine!" Billy cried, and he started to sway.

"I'll control all the apps!" And he shouted "OLE!
From former King Blue, finished now my divorce is;
While word and Excel will use all the resources.

I'll buy out that Fox, and I'll reap what he's sown,
For | am the ruler of all that | own."

Then Billy cried "No one can sell a PC,

Unless he is willing to pay me a fee."

But as he was speaking, he heard with great dread
A meek little voice coming from a mild Fed.
"Excuse me, great King, | wish not to alarm,

But | think there's a danger you'll do us all harm.
Be nice, and please tell us you never would cheat,
And that other vendors can truly compete.

Please tell us, King Billy, so we won't think of suing,



That your right hand knows not what your left hand is doing."

"SILENCE!" yelled Billy, his face a bright red.

"I'm king, and you're only a meek little Fed.

We've worked much too hard to let you guys demote us;
I'm bigger than Novell, I'm bigger than Lotus!

Get out of my way; it's a shame you can't see

That your boss was elected to serve men like me.

You'll never get me '‘cause my bandwidth is tough.

And I've got the power! Though not near enough."

Then Billy, he smiled and explained what he meant,

"l just want my fair share -- that's one hundred percent.
If it takes a computer, | must have no equal

In spreadsheets, games, CDs, words, BASIC, or SQL.
Home finance is one place where | really blew it --

But that doesn't matter; I'll just buy Intuit."

But that meek little Fed made a meekish attack.

He asked "Have you settled with that fellow, Stac?"

"l have," laughed King Billy, "it ended just fine.

| bought part of Stac; he won't get out of line."

Then the Fed humbly asked as he fell in a swoon
"Can you say why your apps all had OLE so soon?"
Then Billy the Chilly switched to angry mode;

"Are you saying | let myself read my own code?
Such things do not happen, and | don't like your tone.
For | am the ruler of all that | own."

But as he was planning himself to enshrine,

He noticed that millions were going online.

"If they talk will their talk be a squawk that goes my way?
I must buy control of the Info-Net Highway.

I'll build my own turnpike, and I'll charge the toll.

And what is said on it, that | will control.

Millions will use it; my network will thrive,

I'll make it a part of Windows 95."

Then the meek little Fed made a meek little noise.
"Perhaps we'll agree to let you keep your toys.

A big courtroom battle we'd hate to prolong,

So let us just say that you've done nothing wrong."
"| like that," said Bill, "And to make it quite plain,
What | haven't done, | won't do it ... again."”

So Billy shook hands with the meek little Fed,



And signed an agreement that left him ahead.

The Fed smiled at Billy and thought them both blessed.
But one little judge found it hard to digest.

He thought about Billy as his stomach, it turned.

And that little judge -- well, his money, he earned.

For that little judge did a curious thing:

He decided,

And thus shook the throne of the king.

And Billy the Chilly, the king of the DOS,

The king of Excel, the NT albatross,

The king of Encarta and that C++ tool ...

Well, that was the end of the Chilly King's rule!
For Billy, he failed, then retried to abort,

Fell out of his Office and plunk into court!

And today the great Billy, who never atones,

Is King of QBASIC, that's all that he owns.

And the vendors and users, well all are now free.

Don't you wish, in this world, that's the way it could be?



Top 20 Engineers' Terminologies

1. ANUMBER OF DIFFERENT APPROACHES ARE BEING TRIED
- We are still spitting in the wind.

2. EXTENSIVE REPORT IS BEING PREPARED ON A FRESH APPROACH TO THE
PROBLEM
- We just hired three kids fresh out of college.

3. CLOSE PROJECT COORDINATION
- We know who to blame.

4. MAJOR TECHNOLOGICAL BREAKTHROUGH
- It works OK, but looks very hi-tech.

5. CUSTOMER SATISFACTION IS DELIVERED ASSURED
- We are so far behind schedule the customer is happy to get it delivered.

6. PRELIMINARY OPERATIONAL TESTS WERE INCONCLUSIVE
- The darn thing blew up when we threw the switch.

7. TEST RESULTS WERE EXTREMELY GRATIFYING
- We are so surprised that the stupid thing works.

8. THE ENTIRE CONCEPT WILL HAVE TO BE ABANDONED
- The only person who understood the thing quit.

9. ITISINTHE PROCESS
- It is so wrapped up in red tape that the situation is about hopeless.

10. WE WILL LOOK INTO IT
- Forget it! We have enough problems for now.

11. PLEASE NOTE AND INITIAL
- Let's spread responsibility for the screw up

12. GIVE US THE BENEFIT OF YOUR THINKING
- We'll listen to what you have to say as long as it doesn't interfere with what we've
already done.

13. GIVE US YOUR INTERPRETATION
- | can't wait to hear this BS!

14. SEE ME or LET'S DISCUSS
- Come into my office, I'm lonely.



15. ALL NEW
- Parts not interchangeable with the previous design.

16. RUGGED
- Too damn heavy to lift!

17. LIGHTWEIGHT
- Lighter than RUGGED.

18. YEARS OF DEVELOPMENT
- One finally worked.

19. ENERGY SAVING
- Achieved when the power switch is off.

20. LOW MAINTENANCE
- Impossible to fix if broken.



YET ANOTHER LAYPERSON'S GUIDE TO PROGRAMMING LANGUAGES

C: You shoot yourself in the foot.

C++: You accidentally create a dozen instances of yourself and shoot them all in the
foot. Providing emergency assistance is impossible since you can't tell which are
bitwise copies and which are just pointing at others and saying, "That's me, over there."
Fortran: You shoot yourself in each toe, iteratively, until you run out of toes, then you
read in the next foot and repeat. If you run out of bullets, you continue anyway
because you have no exception-handling ability.

Modula-2: After realizing that you can't accomplish anything in this language, you
shoot yourself in the head.

COBOL: USEing a COLT 45 HANDGUN, AIM gun at LEG.FOOT, THEN place
ARM.HAND.FINGER on HANDGUN.TRIGGER and SQUEEZE, THEN return
HANDGUN to HOLDSTER. CHECK whether shoelace needs to be retied.

LISP: You shoot yourself in the appendage which holds the gun with which you shoot
yourself in the appendage which holds the gun with which you shoot yourself in the
appendage which holds the gun with which you shoot yourself in the appendage which
holds

BASIC: Shoot yourself in foot with water pistol. On big systems, continue until entire
lower body is waterlogged.

FORTH: Foot in yourself shoot.

APL: You shoot yourself in the foot, then spend all day figuring out how to do it in
fewer characters.

Pascal: The compiler won't let you shoot yourself in the foot.

SNOBOL: If you succeed, shoot yourself in the left foot. If you fail, shoot yourself in
the right foot.

Concurrent Euclid:  You shoot yourself in somebody else's foot.
HyperTalk: Put the first bullet of the gun into the left of leg of you. Answer the result.
Motif: You spend days writing a UIL description of your foot, the trajectory, the bullet,

and the intricate scrollwork on the ivory handles of the gun. When you finally get
around to pulling the trigger, the gun jams.



Unix: % Is foot.c foot.h foot.o toe.c toe.o % rm *.o0 rm: .0: No such file or directory % is
%

DOS: You can't get to either foot from here.

0S/2: Point to Body and click, point to leg and click, point to lower leg and click, point to
foot and gun goes click.

Xbase: Shooting yourself is no problem. If you want to shoot yourself in the foot,
you'll have to use Clipper.

Paradox: Not only can you shoot yourself in the foot, your users can too.

Revelation: You'll be able to shoot yourself in the foot, just as soon as you figure out
what all these bullets are for.

Visual Basic: You'll shoot yourself in the foot, but you'll have so much fun doing it that
you don't care.

Prolog: You tell your program you want to be shot in the foot. The program figures out
how to do it, but the syntax doesn't allow it to explain.

370 JCL: You send your foot down to MIS with a 4000-page document explaining how
you want it to be shot. Three years later, your foot comes back deep-fried.



A Girl's Guide to Geek Guys

So, your crush on the bass player from Vibrating Sandbox has finally died a whimpering
death and you're wondering where to go from here. All the sinister dudes are either
dating a series of interchangeable high-school riot grrrris in baby doll dresses and an
overdose of manic panic hair dye, or permanently shacked up with some bitter old lady
who pays all the bills. Which will it be, a wifely prison or a humiliating one night stand?
Into this void of potential mates comes a man you may not have considered before, a
man of substance, quietude and stability, a cerebral creature with a culture all his own.
In short, a geek.

Why Geek Dudes Rule

o They are generally available.

o Other women will tend not to steal them.
o They can fix things.

o Your parents will love them.

o They're smart.

Where The Geek Dude Lurks

While they are often into alternative music, geek dudes tend not to go to shows too
often. Instead you'll find them hanging out with their friends, discussing the latest
hardware revolution or perfecting their Bill Gates impressions. You know how some
people wear t-shirts with their favorite bands on them, thus showing that they went to
certain shows? Well, geek dudes wear t-shirts with the logos of different software
companies on them, thus showing that they are up on the latest, um, releases. A small,
though convivial, rivalry may be detected here amongst the geek dudes. Try wearing
one yourself and see if he strikes up a conversation.

Of course the best way to meet a geek dude is through the Internet. All geeks harbor a
secret fantasy about meeting some girl in cyberspace, carrying on an e-mail romance in
which he has the chance to combine an activity he is comfortable with, computing, with
one he is very uncomfortable with, socializing. To many geek dudes, cyberdating is
just an advanced form of some kind of video game, but they are frustrated by a lack of
players. Their lack is your strength.

Imprinting



You might notice that these men harbor some strange ideas about how the world works
and some particularly strange ideas about women. There is a reason for this.

Because they've had limited interpersonal experience, geek dudes must look elsewhere
for behavior models. Lacking a real world social milieu, geeks often go through a
transference stage with such narratives, and try to model their interactions on them.
Thus, certain media images and themes come to have an overly cathected,
metaphorized reality to them, while the rest of us view such programming as mere
entertainment. Case in point, our next topic...

The Trek factor

If you're not up on your Star Trek, you can forget about getting or keeping a geek dude.
And I'm not just talking vintage-era Captain Kirk and Spock either. You've got to be up
on your The Next Generation, your Deep Space Nine, your Babylon 5, and let us not
forget Voyager. Armed with your own knowledge of Federation policies, you can better
gauge when and how to act. The sexual politics of Star Trek are pretty blunt: the men
run the technology and the ship, and the women are caretakers (a doctor and a
counselor). Note the sexual tensions on the bridge of the Enterprise: the women, in
skin tight uniforms, and with luxuriant, flowing hair. The men, often balding, and sporting
some sort of permanently attached computer auxiliary. This world metaphorizes the
fantasies of the geek dude, who sees himself in the geeky-but-heroic male officers and
who secretly desires a sexy, smart, Deanna or Bev to come along and deferentially
accept him for who he is. If you are willing to accept that this is his starting point for
reality, you are ready for a geek relationship.

Once You've Nabbed Him

Of course, catching that geek guy is only half the battle. Keeping him by your side is
another story altogether. | was privileged to speak with Miss Victoria Maat, who not
only got herself a geek guy but was also clever enough to marry him just a few short
months ago. She interrupted her newlywed bliss to give us a few tips on the care and
feeding of a geek man:

Geeks are sensitive and caring lovers and husbands. If you can hang with the techno-
lifestyle, they make the best mates. They are the most attractive people, not flashy or
hunky, but the kind who get cuter and more alluring over time (I told you she was a
newlywed). Definitely give geeks a chance.

Geek Cuisine
Geeks tend towards packaged, junk foods since they prefer to work and think and aren't

all that into cooking for themselves. Make sure that your geek understands that you
are not merely a replicator, and provide him with home cooked food. A batch of



chocolate chip cookies will let him know that you love him. You do have to monitor
your geek for weight gain; however, remember that most of their days are spent sitting
and staring at a monitor.

Geek Lifestyle

The geek dude has long work habits and tends to bring his work home with him. He
seems permanently connected to his hard disk. You must at least appear interested in
his work. Generally, a solid understanding of the computer is a must; if you cannot
master this, you should at least be able to talk the talk. Remember most geeks are
anal and they get stressed about details which appear insignificant. Be understanding,
put on your best Deanna Troi face (see above) and empathize.

To relax, geeks love to play the latest computer games. Let him play Myst or Chuck
Yeager's Air Combat for hours if he wants to. Act concerned if he's stuck or has just
been ambushed by three MiGs. My geek loves to try to help people on the Internet
who say that they are stuck in Myst. He comes up with clever riddles instead of
directing them point blank. Geeks also like to go to sci-fi and Japanese animated
movies, again, a basically harmless vent for your man.

Geek Buddies

Many geeks extend their work friendships into what they jokingly refer to as RL (Real
Life, also known as "that big room with the ceiling that is sometimes blue and
sometimes black with little lights"). The greatest thing about your geek's buddies is that
you can feel secure in setting them up with your girlfriends. They may feel awkward
around females at first, so don't overwhelm them. In time they will come out of their
shell and realize that you are into the same things they are.

Post-It Note
| thank Victoria for the above advice. | must say that when she read my draft of the
piece, before writing her section, she asked her husband which one he thought she was
more like, Deanna or Beverly. Howard, the devil, immediately replied that he had always
thought Victoria was actually most like Ensign Ro Laren, a cute character with a slight
authority problem who is always in trouble (this is fairly apt). This exchange is
interesting for several reasons:

o Howard had already thought about who she was most like.

o He could summon up characters from seasons past with ease.

o Victoria actually knew who he meant.



Folks, | think this marriage will last.

One Last Thing

Because they have been so abused and ignored by society, many geeks have gone
underground. You may actually know some and just haven't noticed them. They often
feel resentful, and misunderstood, and it is important to realize this as you grow closer
to them. Don't ever try to force the issue, or make crazy demands that he choose
between his computer and you. Remember, his computer has been there for him his
whole life; you are a new interloper he hasn't quite grasped yet.

Geek dudes thrive on mystery and love challenges and intellectual puzzles. Don't you
consider yourself one? Wouldn't you like a little intellectual stimulation or your own?
We thought so.



A Grandchild's guide to using Grandpa's computer
(Ode to Dr. Seuss, with apologies to 'Fox in Sox')

Bits. Bytes. Chips. Clocks.

Bits in bytes on chips in box.

Bytes with bits and chips with clocks.
Chips in box on ether-docks.

Chips with bits come.
Chips with bytes come.
Chips with bits and bytes and clocks come.

Look, sir. Look, sir.

Read the book, sir.

Let's do tricks with bits and bytes, sir.
Let's do tricks with chips and clocks, sir.

First, I'll make a quick trick bit stack. Then I'll make a quick trick byte stack.
You can make a quick trick chip stack.
You can make a quick trick clock stack.

And here's a new trick on the scene.
Bits in bytes for your machine.
Bytes in words to fill your screen.

Now we come to ticks and tocks, sir.
Try to say this by the clock, sir.

Clocks on chips tick.

Clocks on chips tock.

Eight byte bits tick.

Eight bit bytes tock.

Clocks on chips with eight bit bytes tick Chips with clocks and eight byte bits tock.

Here's an easy game to play.
Here's an easy thing to say.

If a packet hits a pocket on a socket on a port,

And the bus is interrupted as a very last resort,

And the address of the memory makes your floppy disk abort,
Then the socket packet pocket has an error to report!

If your cursor finds a menu item followed by a dash,

And the double-clicking icon puts your window in the trash,
And your data is corrupted 'cause the index doesn't hash,
Then your situation's hopeless and your system's gonna crash.



You can't say this?
What a shame, sir!
We'll find you another game, sir.

If the label on the cable on the table at your house

Says the network is connected to the button on your mouse,
But your packets want to tunnel on another protocol,

That's repeatedly rejected by the printer down the hall,

And your screen is all distorted by the side effects of gauss
So your icons in the window are as wavy as a souse,

Then you may as well reboot and go out with a bang,
'‘Cause as sure as I'm a poet, the sucker's gonna hang!

When the copy of your floppy's getting sloppy on the disk,

And the microcode instructions cause unnecessary risc,

Then you have to flash your memory and you'll want to ram your ROM.
Quickly turn off your computer and be sure to tell your mom!



Heaven's donuts are jelly donuts. The blend of texture, from the cool, sweet ooze of
the jelly, mined with tiny rasberry seeds, to the firm, spongy cake, so lightly encrusted in
a thin glaze of sugar, that cracks and flakes as you gingerly tear off small pieces of
delight, is certainly the greatest experience a humble man can afford.

| was eating a jelly donut when he first appeared in my office, smelling slightly of
gunpowder. He was tall and gaunt, with deep-set eyes and crooked teeth, long,
delicate fingers, and sloped shoulders.

He wore a black Ozzy Osborne concert t-shirt, frayed black jeans, and dusty black high-
tops, unlaced. He smiled at me in an ugly way. | put down my donut and glanced at
my watch. 7:00 PM.

"You're David Webster."

| nodded.

"You're a programmer for Core."

| nodded again. Not only was | a programmer for Core--l was the best damn
programmer this group had ever or would ever see. | suppose
| should introduce myself. | am David Elijah Webster, master programmer. I'm not just
blowing smoke here either. I'm the best damn programmer to come out of MIT since
code was constructed one bit at atime. |can do it all: C, LISP, assembly--even the
languages no self-respecting programmer would deign to look at. | can doitall in no
time flat, with the most elegant of style. Code sprinkled with glistening semicolons and
flowing rivers of indentation. Lesser programmers avert their eyes when | enter the
room.

"They say you're the best, and I'm here to challenge you."

| sized this guy up again. He had the right shape. The pot-belly, the greasy hair,
parted with percision. The fingers. And the funny smell.

| told him | didn't have time.

"I'll make it worth your while," he said. "l have something you might be interested in.
Follow me."

| grabbed my box of donuts, and followed him down the hall and into the elevator. He
pressed a button and the elevator descended into the basement. I'd never been in the
basement before. For that matter, | didn't even recall that the building had a basement.
Nonetheless, the elevator chimed, the doors opened, and we stepped out into a wide
room that was entirely featureless. That is, except for the fog on the floor and two
workstations that were set up, side by side. One of the workstations was mine. The
other was a workstation like none other that | had seen before. It was magnificent.

It was matte black. More than an object, it looked like a hole in space. The monitor
it sported was the biggest | had ever seen, and the keyboard was a flow of liquid lines,
containing a field of keys of different sizes and shapes, packed in like cobblestones.
The mouse floated above the table, and had no wire. Next to the computer was a box
with a small chute coming out of one side, and a large red button on the top. The
monitor was flanked by two gigantic speakers, and | could see a sub-woofer poking up
out of the fog. It hummed. It steamed. It was the most beautiful computer | had ever
seen.

"You approve," said the stranger.

| swallowed and said, "It is beyond description."

"It's a custom job. And it's yours. If," he said, "If you can beat me in a coding



contest."

| looked at him incredulously. "What's in it for you?"

"l will have defeated the greatest coder in the world, and thus, | can claim that title.
AND, | get to keep your immortal soul."

He smiled the ugly smile again.

Here was a dilemma. | was dealing with the Devil. There was no doubt about that.
And he was no doubt very good. | am somewhat attached to my soul, but oh, the
prizes. The glory. | can easily claim to be the best coder in the company, in the Bay
Area, probably on the whole planet, but if | pulled this off, | will have shown myself to be
the best coder in this entire theology! Vanity got the better part of me.

"What's the contest?" | asked.

| won't bore you with the details, but it was seriously ugly. Ugly in a way that makes
the most arrogant of coders cringe and causes managers to pad development
schedules into the next century. It had to run in any language, including the nasty
chicken-scratch ones. It had to be backward compatible all the way to the ENIAC.
And it had to run on Windows. | cringed.

But vanity won. | signed the forms, agreed on a deadline of midnight, and we sat
down at our machines and started to code.

My watch said 8:00 PM, and | started warming up. Class definitions flew off my
fingertips like throwing stars. Structures and declarations grew like perfect crystals,
and | didn't even break a sweat. True to the task, | soon lost myself in an endless cycle
of postulate, create, instantiate and verify. Bits grew to bytes, to K, to Megs, and finally
to Gigs. By 11:00 PM it had come to that crucial point. With an hour to go, | had to
put all the peices together. It wasn't going to be easy. It was going to take all the
concentration | had.

Then | hit the first bug.

At first, | wasn't sure where it was coming from, but then | spotted it. It wasn't mine.
It was bug in Windows. Even worse, it was a bug in Windows that stemmed from a
timing problem with the system clock itself. | couldn't see a workaround. | was
stymied. | genuflected and called Microsoft support.

"Hello, and welcome to the Microsoft help line. Please enter your 64 digit user
identification number, followed by your 32 digit password."

While | frantically typed number after number, trying to navigate through layer upon
layer of phone menu, | heard him pick up his phone and call a number.

"Hello, is Bill in? ... | don't care, wake him up ... Tell him it's
Mr. Black ... Hey Bill, what's shakin'? Listen, | needed to know a workaround to one of
your bugs ... Yes, | know what time it is
... Yes, | know ... Bill ... Billl You remember our little deal?

... That's right. Now be a dear and give me that workaround ... Mm-hm
... Right ... Thank you, Bill. I'll be seeing you."

| was shocked. It was obviously pointless continuing my desperate journey through
Microsoft's Help line. | needed immediate genius! | scarfed down a grape jelly.
Sugar shock engulfed me, and my vision tunneled. | shuddered once, something
clicked, and | determined the answer | needed--I could use the clock on the sound chip
to get my timings.

| dove back into the code, and was quickly integrating modules when | hit bug number



two. It was even uglier than the first. In fact, it was the ugliest bug | had ever seen. It
was a problem with C. With the language itself. There's no way fix a broken hammer
using the same hammer.

| wracked my brains. | clenched and grunted and sweated and thought and Thought
and THOUGHT, but to no avail. Over my shoulder, | could hear Him chime in, "Bugger,
isn'tit? | remember putting that one in back when | was working on the Unix kernal.
Did you really think there was a Kernighan and Ritchie? Rearrange the letters in their
names and you'll discover an interesting anagram."

| ignored him and continued thinking. My mind went deeper and deeper into the
problem at hand--my senses dulled, my breathing grew shallow.

My eyes rolled back and sweat beaded on my forehead. Clumsily, blindly, my hand
pawed it's way to the box on my desk, containing my last jelly donut. It raised slowly to
my lips, and | bit.

Pounding waves of sugar induced euphoria washed through my mind. | felt my brain
hum and crackle. My hands trembled, my body shuddered, and | began to type. | was
a man possessed. Complex topographical math equations formed on my screen.

Klien bottles and hypercubes locked neatly into place like pieces of a puzzle. Beyond
my control, a complex mathematical world formed in my computer, with additional
dimensions unimaginable.

| felt a small pop, and | came to. | looked at my screen. | had worked around the
bug.

My watch read 11:45. Frantically | continued putting all the modules into place.
Glancing for a moment at my rival, | could see | had him worried. He was typing
furiously. Smoke poured from his ears, and flames licked around his collar.

Then | hit the third bug.

It was not so much a bug, it was a limit. | only had 4 Gigabytes of memory, and | had
used it all. There wasn't a bit left. | had compressed data to a point so fine that it was
in danger of collapsing into a black hole. | was storing memory in every conceivable
way, including keeping a chain of sound waves running between the speaker and the
microphone. There was no memory left to be had.

Frantic, | reached into my box of donuts, and my heart sank into my stomach when |
realized that | had eaten the last one. | glanced at my watch, but it was too late. | was
sunk. | had done the best that | could, and | had nothing more to give.

The Devil laughed, and grinning cruelly, he reached over to the box with the chute and
the button. Remember the box? Slowly, firmly, his hand pressed the red button, and a
jelly donut slid down the chute and onto the table.

My jaw dropped. "What...is...that?" | asked.

He languorously chewed as he replied, "The Box of Eternal Donuts."

"The Box of Eternal Donuts!?"

"Yes," he said.

"It never runs out?"

"Never," he said.

"It's mine if | win?!?!"

"If you can win, it is entirely yours," he replied, grinning cockily.

My mind reeled. The Box of Eternal Donuts. The Box of Eternal Donuts! My eyes
darted everywhere, my jaw hung slack, and my throat emitted strange animal-like



noises. Anything. | would do anything to win! [ just needed the smallest amount of
memory. But where could | get it from? | glanced at my watch again, and a plan came
into my mind. A beautiful, devious plan.

| went quickly upstairs and retrieved the emergency toolkit that we keep in the
medicine cabinet. | ripped the case off my computer, and quickly scanned for the right
connections. | pulled two wires, and unscrewed the back of my watch. The Devil's
eyes widened and he desparately started coding again, but it was too late. | got the
last of the memory | needed out of my watch, and pressed the ENTER key seconds
before he did.

The watch burst into flames. Sparks flew from the disk drives and the monitor
glowed and throbbed, finally melting into a puddle of glass. The computer exploded in
a shower of sparks, and then there was absolute silence.

There was a pause, and both of us turned as the printer started, slowly emitting a
single sheet that wafted gently into the out bin. | nonchalantly strolled over, and held
up to the Devil's scowling face, a sheet imprinted with two words. "Hello World".

Nothing more needs to be told, other than, as | write this, | am sitting in front of my
new computer, munching on what is undoubtedly the best jelly donut | have ever eaten.



It was a typical morning at the office: 53 new e-mail messages, 86 games of telephone
tag lobbed into my court, and a mass of Post-its reminding me of about 18 missed
deadlines. So | knew exactly what to expect when my boss appeared.

"Good morning," she said cheerfully. "I need complete information on how soy
cheese is affecting Wisconsin's trucking industry. Drop everything else until you get this
done." She disappeared as quickly as she had materialized.

| considered my situation. | would have to put off finishing the Forbin Project, for
which I'd dropped the Morbius Proposition the day before. Of course, Morbius had
forced me to set aside the Kinsey Report, for which | had delayed ...? | had trouble
remembering farther back than that.

Luckily, | had a new weapon to help in my research project: The World Wide Web.
With the help of my new Web browser, Odysseus, | knew | could sneak into any server,
siphon off the key data | needed, then find my way home in no time.

| launched Odysseus, entered my password, clicked the button to go online, and
waited as my modem dialed, made contact, hissed at my Internet server, and
exchanged more civilized protocols. Then | repeated the process, using the right
password.

The second time around, Odysseus successfully made contact with the World
Wide Web, affording me a chance to wait some more. In the upper left hand corner, a
small icon of a Bronze Age ship circled the Mediterranean, while the text for Odysseus's
own Hollow Horse home page wrote itself out. Then, line by line, twin murals of the lliad
and Odyssey formed on-screen.

HOME RUNT But since | didn't want to read about the latest offerings from Mythological
Software, the Hollow Horse home page was not where | wanted to be. So | pressed my
Hot button (I love saying that) and selected the Brobdingnagian Black Widow Web
Searcher page from the University of Michigan in Copenhagen.

Net traffic must have been light that day, because in less than four minutes | had a
window full of instructions, prompts and the requisite cartoon of a giant spider attacking
the world. | set up my search criteria "Soy AND trucking AND Wisconsin," pressed the
Search button (I don't like saying that nearly so much), and got up for a coffee break.

Three cups and a few revelations about office romances later, | returned to my PC
just as the search was finishing. There were 83 hits, the most promising of which was
"Truckers, Soy Beans, and Wisconsin," a page emanating from a data-processing plant
in Honolulu. | clicked on it, and five minutes later found myself staring at a photograph
of three cats named Truckers, Soy Beans, and Wisconsin. The accompanying text filled
me in on their favorite foods and pastimes.

After jotting down a few notes on cat care that might one day prove useful, |
backtracked to my search results, and started working my way through the other 82 hits.
After 14 additional pet pages, 3 obscene illustrations, one trap set up to steal my
password, and 42 "Address Wrong or Go Back to America Online" error messages, |
found something interesting: a discussion on the use of beans in the Wisconsin area's
pre-Columbian art. | leaned forward and started reading.

It was fascinating stuff. Did you know that there is absolutely no evidence that
beans were used in the Wisconsin area's pre-Columbian art? That's the sort of
information you can only find on the Web.



At the bottom of the article was a link to the Artifacts of Ancient Civilizations That
May or May Not Have Existed home page. Who could resist? | clicked, then got up and
jogged around the block.

RAMBLIN' ON By the time | got back, the page was just beginning to appear. | browsed
a few topics on the similarities between Mayan and Martian cultures before discovering
the Foods of the World home page. This was amazing! | could actually click on a carrot
and watch it grow. Or place an order with a pizzeria with a fax-back service. Not that
everything was this exciting; there was even an article on how soy cheese is affecting
Wisconsin's trucking industry, but | abandoned it for the piece on eggplant as an
aphrodisiac.

I'm not sure how the connection was made, but somehow | found myself at the
U.S. Census site, examining data tables of people, broken down by age and sex.
Finding myself on both lists, | clicked on the first available link, which brought me to a
catalog selling replacement parts for 19th century steam engines.

Odysseus was just finishing displaying the catalog's pictures when | returned from
lunch. Soon | was pondering exactly where in my office I'd put a 400-pound water pump,
and how many people would get access to my credit card number if | ordered it.

| was deep in thought when | realized someone was standing behind me. It was my
boss. | flicked on my screen saver and spun around to face her, hoping she hadn't seen
my screen.

"Hello," she said cheerily. "I need to know how rainfall in British Columbia is
affecting the tourist trade in Malaysia. Drop everything else until you get this done."



MyWordVar := MyTObjectDescendant.InstanceSize;
{This is for descendants of TObject.}



Q: How do | read and write to a com-port?
A:

program PortAccess;

var
port: TextFile;
x: char;

begin

Assign (port, 'COM2');
Rewrite (port);
write (port, 'AS5', #13);
{ sample uses:
read (port, x);
write (port, x);
}
close (port) ;
end.



Q: How do | iterate through tabbed notebook pages to see each object?

A: Here is a procedure that will iterate through all tabbed notebook pages and add the
object name and type under the page's name in an outline.

procedure TForml.Button2Click (Sender: TObject):;
var

cmpnts, pg: word;

MyPageObj: TObject;

OutlineIdx: longint;

begin
for pg := 0 to TabbedNotebookl.pages.count - 1 do begin
MyPageObj := TabbedNotebookl.pages.objects[pg]l;
OutlineIdx := outlinel.add (0, TabbedNotebookl.pagesl[pg]):
for cmpnts := 0 to componentCount - 1 do
if (components[cmpnts] as TControl) .parent = MyPageObj then
outlinel.AddChild (outlineIdx, components[cmpnts].name +
' ['" + components|[cmpnts].ClassName + ']'");
end;
end;

As it turns out, there is a slight problem with this code. If a page and its components
are added dynamically, this code will not find it. That is because the new component is
added to the page's component list and not the form's list. Here is a way around that
one:

var
cmpnts, pg: word;
MyPageObj: TWinControl;
OutlineIdx: longint;

begin
for pg := 0 to TabbedNotebookl.pages.count - 1 do begin
MyPageObj := (TabbedNotebookl.pages.objects[pg]) as TWinControl;
OutlineIdx := outlinel.add (0, TabbedNotebookl.pages|[pgl):
with MyPageObj do
for cmpnts := 0 to ControlCount - 1 do
outlinel.AddChild (outlineIdx, Controls|[cmpnts].name +
' ['" + Controls[cmpnts].ClassName + ']"'");
end;

end;



Q: How can | parse a PChar?

A: This reads the autoexec.bat file into a memory block referenced by a PChar. Then,
it is parsed, line by line, into a list box.

(Yes. | know that 1istbox1.items.LoadFromFile ("c:\autoexec.bat'); is simpler, but
this is an exercise in PChar use.)

procedure TForml.ButtonlClick(Sender: TObject);
var
f: file;
pBeginString, pEndString, pTemp: PChar;
scratch: array[0..255] of char; {Automatically gets memory allocated for
it.}
LengthOfFile: integer;
begin
{Get the information.}
AssignFile (f, 'c:\autoexec.bat');
{Because this is not a text file type, the record size is 1 (char)}
Reset (£, 1);
LengthOfFile := FileSize(f) + 1; {Add one for the null terminator.}
pBeginString := AllocMem (LengthOfFile); {Zeros the memory also.}
BlockRead (f, pBeginString”, LengthOfFile - 1);
CloseFile(f);

pTemp := pBeginString;
inc (pTemp, LengthOfFile);

{Parse the strings into the Listbox.}

repeat
pEndString := StrPos (pBeginString, #13#10); {carriage return/line feed}
listBoxl.items.add (StrPas (StrLCopy (scratch,
pBeginString, pEndString - pBeginString)));
inc (pBeginString, pEndString - pBeginString + 2);

until pBeginString >= pTemp - 2;

dec (pTemp, LengthOfFile);

FreeMem (pTemp, LengthOfFile);

end;



Q: How do | pass variables to Report Smith?

A: The important part of the code is line to concatenate the single quotes to the string.
(If it is just a string that is being passed, you don't need the embedded quotes. That is
for a date string.)

In Report Smith, the REP VAR is

Name: tday
Type: DATE
Entry: Type-in

(Note: The values passed to RS are case sensitive.)

procedure PassVars;
var s: string;

begin
s := DateToStr (date);
s = '"'""" + s + """, {This is not needed for regular strings.}

reportl.InitialValues.add('@tday=<"'+s+'>");
reportl.run;
end;



How do | pass variables to Report Smith?

How can | get rid of the ReportSmith about box splash screen when | run a report?
How do | connect to TReport?




DbiGetNetUserName

DbiGetErrorString
DbiSaveChanges



Using DbiGetNetUserName:

uses
DbiTypes, DbiProcs, DbiErrs;

procedure Whatever;

var
szVar: array[0..200] of char;
begin
DbiGetNetUserName (szVar) ;
editl.text := szVar;

end;



Using DbiGetErrorString:

uses
DbiTypes, DbiProcs, DbiErrs;

procedure Whatever;
var
rslt: DbiResult;
szVar: array[0..200] of char;

begin
rslt := DbiGetNetUserName (szVar); {...or whatever you're checking.}
DbiGetErrorString(rslt, szVar);
edit2.text := szVar; {sample display}

end;



Q: How do | populate a popup menu on the fly?
A:

var
NewItem: TMenultem;
i: integer;

begin
for i := 0 to listBoxl.items.count - 1 do begin
NewItem := TMenultem.Create (Self);
NewItem.Caption := listBoxl.items[i];
PopupMenul.items.Add (NewItem) ;
end;

end;



Q: How can | write my Delphi program to detect if there is already another copy
running and exit if so?

A: Here is some code from Pat Ritchey that works great. Create a unit called Previnst
and add it to your uses clause. Here's the code:

unit PrevInst;
interface

uses
WinTypes, WinProcs, SysUtils;

type

PHWND = “HWND;

function EnumFunc (Wnd:HWND; TargetWindow:PHWND) : bool; export;
procedure GotoPreviousInstance;

implementation

function EnumFunc (Wnd:HWND; TargetWindow:PHWND): bool;

var
ClassName : arrayl[0..30] of char;
begin
Result := true;
if GetWindowWord (Wnd, GWW HINSTANCE) = hPrevInst then
begin
GetClassName (Wnd, ClassName, 30) ;
if StrIComp (ClassName, 'TApplication') = 0 then
begin
TargetWindow” := Wnd;
Result := false;
end;
end;
end;

procedure GotoPreviousInstance;

var

PrevInstWnd : HWND;
begin

PrevInstWnd := 0;

EnumWindows (@EnumFunc, longint (@PrevInstWnd)) ;
if PrevInstWnd <> 0 then
if IsIconic (PrevInstWnd) then
ShowWindow (PrevInstWnd, SW RESTORE)
else
BringWindowToTop (PrevInstWnd) ;
end;

end.
And then make the main block of your *.DPR file look something like this--

if hPrevInst <> 0 then
GotoPreviousInstance



else

begin
Application.CreateForm (MyForm, MyForm) ;
Application.Run;

end;



Q: | need to process certain files (*.ssd) in a user selected directory and every nested
directory thereafter using Delphi. Anyone has any pointers to give me? What calls to
use (my main concern is how to recognize a subdirectory while scanning a directory),
may be a fragment of code that does something similar?

A: FindFirst and FindNext are the key functions.

Here is the short version. It is written in a generic way so that you can use the
FileFind() procedure from any unit.

unit Findfile;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls;

type

TForml = class (TForm)
ListBoxl: TListBox;
Buttonl: TButton;
Editl: TEdit;
Labell: TLabel;
Edit2: TEdit;
Label2: TLabel;
procedure ButtonlClick (Sender: TObject);

private
{ Private declarations }
public
{ Public declarations }
end;
var

Forml: TForml;
implementation
{SR *.DFM}

procedure FileFind(StartingDirectory, FileName: string; FilesFound:
TStringlList);

procedure SearchTree;
var
SearchRec: TSearchRec;
DosError: integer;
dir: string;

begin
GetDir (0, dir);
if dir[length(dir)] <> '"\' then dir := dir + '"\';
DosError := FindFirst (FileName, 0, SearchRec);
while DosError = 0 do begin

try



FilesFound.add (dir + SearchRec.name) ;
except
on EOutOfResources do begin
ShowMessage ('Too many files.');

abort;
end;
end;
DosError := FindNext (SearchRec);
end;
{Now that we have all the files we need, lets go to a subdirectory.}
DosError := FindFirst('*.*', faDirectory, SearchRec);
while DosError = 0 do begin
{If there is one, go there and search.}
if ((SearchRec.attr and faDirectory = faDirectory) and
(SearchRec.name <> '.') and (SearchRec.name <> '..')) then begin

ChDir (SearchRec.name) ;
SearchTree; {Time for the recursion!}

ChDir('..'"); {Down one level.}
end;
DosError := FindNext (SearchRec); {Look for another subdirectory}

end;
end; {SearchTree}

begin
FilesFound.clear;
ChDir (StartingDirectory);
SearchTree;

end; {FileFind}

procedure TForml.ButtonlClick (Sender: TObject);
var
t: TStringList;
begin
t := TStringList.create;
FileFind (edit2.text, editl.text, t);
listboxl.items.assign(t);
t.free;
end;

end.

Here is an example using a slightly different format:

unit Dirlistl;
interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Forms, Dialogs, StdCtrls;

type
TForml = class (TForm)
ListBoxl: TListBox;
Editl: TEdit;

Graphics, Controls,



Labell: TLabel;

Label2: TLabel;

Edit2: TEdit;

Buttonl: TButton;

Button2: TButton;

procedure Button2Click (Sender: TObject);
procedure ButtonlClick(Sender: TObject);

private
Function LogFiles( Const path: String; Const SRec: TSearchRec ): Boolean;
{ Private-Declaration }
public
{ Public-Declaration }
end;
var

Forml: TForml;

implementation
Type
TLogFunct = Function( Const path: String; Const SRec: TSearchRec ): Boolean
of Object;
{SR *.DFM}

Procedure FindRecursive( Const path: String; Const mask: String;
LogFunction: TLogFunct );

Var
fullpath: String;

Function Recurse( Var path: String; Const mask: String ): Boolean;
Var

SRec: TSearchRec;
retval: Integer;
oldlen: Integer;

Begin
Recurse := True;
oldlen := Length( path );
(* phase 1, look for normal files *)
retval := FindFirst( path+mask, faAnyFile, SRec );
While retval = 0 Do Begin
If (SRec.Attr and (faDirectory or faVolumeID)) = 0 Then
(* we found a file, not a directory or volume label,
log it. Bail out if the log function returns false. *)
If not LogFunction( path, SRec ) Then Begin
Result := False;
Break;
End;
retval := FindNext ( SRec );
End;

FindClose( SRec );
If not Result Then Exit;

(* Phase II, look for subdirectories and recurse thru them *)
retval := FindFirst( path+'*.*', faDirectory, SRec );
While retval = 0 Do Begin
If (SRec.Attr and faDirectory) <> 0 Then (* we have a directory *)
If (SRec.Name <> '.') and (SRec.Name <> '..') Then Begin
path := path + SRec.Name + '\';



If not Recurse( path, mask ) Then Begin

Result := False;
Break;
End;
Delete( path, oldlen+1l, 255 );
End;
retval := FindNext ( SRec );
End;
FindClose ( SRec );
End;
Begin
If path = '' Then
GetDir (0, fullpath)
Else

fullpath := path;
If fullpath[Length (fullpath)] <> '\' Then

fullpath := fullpath + '\';
If mask = '' Then

Recurse( fullpath, '"*.*' )
Else

Recurse( fullpath, mask );

End;

Function TForml.LogFiles( Const path: String; Const SRec: TSearchRec ):
Boolean;

Begin

Listboxl.Items.Add( path+SRec.Name );

Result := True; (* proceeed with recursion *)
End;

procedure TForml.Button2Click(Sender: TObject);
begin

Application.Terminate;
end;

procedure TForml.ButtonlClick (Sender: TObject):;
begin
ListBoxl.Clear;
Listboxl.Perform( WM _SETREDRAW, 0, 0 );
FindRecursive ( Editl.Text, Edit2.Text, LogFiles );
Listboxl.Perform/( WM_SETREDRAW, 1, 0 );
Listboxl.Refresh;
end;

end.

---- dirlist1.dfm -----

object Forml: TForml
Left = 260
Top = 222
Width = 642
Height = 300
Caption = 'Recursive Directory Scan'
Font.Color = clWindowText



Font.Height = -17
Font.Name = 'System'
Font.Style = []
PixelsPerInch = 120
Position = poScreenCenter
TextHeight = 20
object Labell: TLabel

Left = 480

Top = 24

Width = 116

Height = 20

Caption = '&Path to search'’
FocusControl = Editl
end
object Label2: TLabel
Left = 480
Top = 96
Width = 74
Height = 20
Caption = '&File Mask'
FocusControl = Edit2
end

object ListBoxl: TListBox
Left = 16
Top = 24
Width = 449
Height = 225
ItemHeight = 20
TabOrder = 0

end

object Editl: TEdit
Left = 480
Top = 48

Width = 137
Height = 29
TabOrder = 1

end

object Edit2: TEdit
Left = 480
Top = 120

Width = 137
Height = 29
TabOrder = 2
end
object Buttonl: TButton
Left = 480
Top = 168
Width = 137
Height = 33
Caption = '&Search'
Default True
TabOrder = 3
OnClick = ButtonlClick
end
object Button2: TButton
Left = 480
Top = 216



Width = 137
Height = 33
Caption = 'Close'
TabOrder = 4
OnClick = Button2Click
end
end



From an ex-field sales/support survivor:

| used to work in a computer store and one day we had a gentleman call in with a
smoking power supply. The service rep was having a bit of trouble convincing this guy
that he had a hardware problem.Service Rep: Sir, something has burnt within your
power supply.

> Customer: | bet that there is some command that | can put into the
Autoexec.bat that will take care of this.

> Service Rep: There is nothing that software can do to help you with this
problem.

> Customer: | know that there is something that | can putin... some
command... maybe it should go into the Config.sys.

>

> [After a few minutes of going round and round]

> Service Rep: Okay, | am not supposed to tell anyone this but there is a

hidden command in some versions of DOS that you can use. |want you to edit your
Autoexec.bat and add the last line as C:\DOS\NOSMOKE and reboot your computer.

> [Customer does this]

> Customer: It is still smoking.

> Service Rep: | guess you need to call MicroSoft and ask them for a patch for
the NOSMOKE.EXE.

>

[The customer then hung up. We thought that we had heard the last of this guy but

NO... he calls back four hours later]
>

Service Rep: Hello Sir, how is your computer?

>

Customer: | call MicroSoft and they said that my Power Supply is incompatible with
their NOSMOKE.EXE and that | need to get a new one. | was wondering when | can
have that done and how much it will cost...

>

Moral: Remember those hidden DOS commands!



Q: How can | detect the presense of a DLL that may or may not be loaded?

A: If you mean "presence in memory", then use GetModuleHandle with the DLLs
module name. [f it returns 0, the module is not loaded. When you get a valid handle
better check the filename with GetModuleFilename since you may have a freak match
with an EXE module name (its rampand chaos out there as far as module names are
considered).

If you mean "presence on system", just try to LoadLibrary the DLL.



Q: How can my component tell if I'm running via the IDE or the EXE?

A: If the component is being used in the IDE the following test will evaluate as true:

csDesigning in ComponentState



file locking



Q: How do | change an icon to bitmap?

A: Here is the idea in short form:

VAR
Pic : TPicture;
TI : TIcon;
BEGIN

TI := TIcon.Create;
TI.Handle := ExtractIcon(HInstance, FileNameBuf, 0);
Pic := TPicture.Create;
Pic.Icon := TI;
Imagel.Picture := Pic; {TImage}
BitBtnl.Glyph := TBitmap.Create;
WITH BitBtnl.Glyph DO
BEGIN
width := TI.Width;
Height := TI.Height;
Canvas.Draw (0, 0, Pic.Icon);
END;

END;

| added a TBitBtn and a TImage to the Form. You will see that TImage looks OK but
sometimes not the TBitBtn.

This is due too that Delphi's Glyph-drawing code checks the lower Left Corner pixel and
uses that as the transparent color. | don't know why they changed that during
development cycle. But of course you can change that pixel yourself.

Here is the idea in long form. It does much more.

This code take a 32x32 icon and runs it through 2 passes. First it makes it a 16x32
bitmap. The second takes it to 16x16. In the reduction | take special care of edges
(often black or a single pixel width color that needs to be maintained) and patterns. By
patterns | am referring to dithering by alternating 2 colors to give a third. An example of
this is using dark yellow and lite gray to give the color of a folder. These patterns are
maintained even after the reduction. | also give special weight to certain colors in the
seperate passes. If none of these conditions apply | averaging.

This procedure will give almost but not exactly the same results as MS in Win95. By
the way This is the same technique they use | found out later. Also of interest is the
fact that this is rather slow so in my Win95 TaskBar replacement (that sure could use
Delphi32 by the way so as to by mutithreaded and allow me to do the last thing that |
can't do in 16 bit land, that is implement the notification area) | cache the 16x16
bitmaps.

procedure TTask.scaleaicon(i:integer);

var



m,n,p,q :integer;
ibitmap, ibitmapl,
oldbitmap, oldbitmapl,

oldbitmap?2 :hbitmap;
icolor :tcolorref;
pc rarray[l..4] of tcolorref;
r,g,b :byte;
memdc, memdcl, memdc?2 :hdc;
isedge,dither :boolean;
begin

memdc:=createcompatibledc (canvas.handle) ;

memdcl :=createcompatibledc (canvas.handle) ;

memdc?2 :=createcompatibledc (canvas.handle) ;
ibitmap:=createcompatiblebitmap (canvas.handle, 32,32);
ibitmapl:=createcompatiblebitmap (canvas.handle, 16,32);
oldbitmap:=selectobject (memdc, ibitmap) ;
oldbitmapl:=selectobject (memdcl, ibitmapl) ;
oldbitmap2:=selectobject (memdc2, lapp[i].ibitmap
selectobject (memdc, getstockobject (ltgray brush)
selectobject (memdcl, getstockobject (ltgray brush
selectobject (memdc2, getstockobject (ltgray brush
patblt (memdc,0,0,32,32,patcopy) ;

patblt (memdcl,0,0,16,32,patcopy) ;

patblt (memdc2,0,0,16,16,patcopy) ;
drawicon (memdc, 0,0, apicon);

’

’

)
) ;
))
))

m:=0;p:=0;
n:=0;q:=0;
while m<32 do
begin
while n<32 do
begin
dither:=false;
icolor:=getpixel (memdc,n,m) ;

pcl[l]:=icolor;

icolor:=getpixel (memdc,n+1l,m) ;

pcl[2]:=icolor;

if (n>0) and (n<30) then

begin
icolor:=getpixel (memdc,n+2,m) ;
pcl[3]:=icolor;
icolor:=getpixel (memdc,n+3,m) ;
pcl[4]:=icolor;
if (pclll=pc(3]) and (pc[2]=pc[4]) then
begin

dither:=true;
setpixel (memdcl, q,p,pcll]);
setpixel (memdcl,g+l,p,pcl2]);

n:=n+4;
q:=qt2;
end;
end;
if not dither then
begin

isedge:=false;
if (n=0) then



begin
if (pc[1]=0)
begin
isedge:=true;
setpixel (memdcl, q,p,0);

or (pc[2]=0) then

n:=n+2;
g:=qg+1;
end else
if (pc[1]1=8421504) or (pc[2]1=8421504) then
begin
isedge:=true;
setpixel (memdcl, q,p,8421504);
n:=n+2;
q:=g+l;
end;
end;
if (n=30) then
begin
if (pcl[l]=0) or (pcl[2]=0) then
begin
isedge:=true;
setpixel (memdcl,q,p,0);
n:=n+2;
q:=qg+l;
end else
if (pc[1]1=8421504) or (pc[2]1=8421504) then
begin
isedge:=true;
setpixel (memdcl, q,p,8421504);
n:=n+2;
g:=qg+l;
end;
end;
if not isedge then
begin
if ((pcl[l]=12632256) and (pc[2]=8421504)) or ((pc[l]=8421504) and
(pc[2]=12632256)) then
begin
r:=128;g:=128;b:=128;
end else
if ((pcll]=16777215) and (pcl[2]1=12632256)) or ((pcl[l]=12632256) and
(pc[2]1=16777215)) then
begin
r:=192;g:=192;b:=192;
end else
if (pcll]=0) or (pcl2]1=0) then
begin
r:=0;g9:=0;b:=0;
end else
begin
r:=byte (round ( (getrvalue (pc[l])+getrvalue (pcl[2]1))/2));
g:=byte (round ( (getgvalue (pc[1l])+tgetgvalue (pcl[2]))/2));
b:=byte (round ( (getbvalue (pc[l])+getbvalue (pc[2]1))/2));
end;
setpixel (memdcl,g,p,rgb(r,g,b));
n:=n+2;

q:=g+l;



end;
end;
end;
m:=m+1;
p:=p+1l;
n:=0;
qg:=0;
end;

m:=0;p:=0;
n:=0;q:=0;
while n<16 do
begin
while m<32 do
begin
dither:=false;
icolor:=getpixel (memdcl,n,m);

pcll]:=icolor;
icolor:=getpixel (memdcl,n,m+1);
pcl[2]:=icolor;
if (m>0) and (m<30) then
begin
icolor:=getpixel (memdcl,n,m+2) ;
pc[3]:=icolor;
icolor:=getpixel (memdcl,n,m+3);
pcl[4]:=icolor;
if (pcl[l]l=pc[3]) and (pc[2]=pc[4]) then
begin

dither:=true;
setpixel (memdc2,q,p,pcll]);
setpixel (memdc2,q,p+l,pcl2]);
m:=m+4;
p:=p+2;
end;
end;
if not dither then
begin
isedge:=false;
if (m=0) then
begin
if (pcll]=0) or (pcl2]1=0) then
begin
isedge:=true;
setpixel (memdc2,q,p,0);
m:=m+2;
p:=p+l;
end else
if (pcl[l1]1=8421504) or (pc[2]1=8421504)
begin
isedge:=true;
setpixel (memdc2,q,p,8421504) ;

m:=m+2;
p:=p+1;
end;

end;
if (m=30) then
begin

then



if (pcll]=0) or (pcl2]=0) then
begin
isedge:=true;
setpixel (memdc2,q,p,0);
m:=m+2;
p:=p+l;
end else
if (pcl[l]=8421504) or (pc[2]=8421504) then
begin
isedge:=true;
setpixel (memdc2,q,p,8421504);

m:=m+2;
p:=p+l;
end;
end;
if not isedge then
begin

if ((pcll]=12632256) and (pc[2]1=8421504)) or ((pcl[l]=8421504) and
(pc[2]1=12632256)) then
begin
r:=128;9g:=128;b:=128;
end else
if ((pcl[l]1=16777215) and (pc[2]1=12632256)) or ((pcl[l]=12632256) and
(pc[21=16777215)) then
begin
r:=192;g:=192;b:=192;
end else
if ((pcll]=0) and (pc[2]1=8421504)) or ((pcl[l]=8421504) and
(pc[2]1=0)) then
begin
r:=128;g:=128;b:=128;
end else
if (pc[1]1=8421504) or (pc[2]1=8421504) then
begin
r:=128;g:=128;b:=128;
end else
begin
r:=byte (round ( (getrvalue (pc[l])+getrvalue (pcl[2]1))/2));
g:=byte (round ( (getgvalue (pc[1l])+getgvalue (pcl[2]))/2));
b:=byte (round ( (getbvalue (pc[l])+getbvalue (pc[2]1))/2));

end;
setpixel (memdc2,q,p,rgb(r,g,b));
m:=m+2;
p:=p+l;
end;
end;
end;
n:=n+1;
qg:=qg+l;
m:=0;
p:=0;
end;

selectobject (memdc, oldbitmap) ;
selectobject (memdcl, oldbitmapl) ;
selectobject (memdc2,o0ldbitmap?) ;
deleteobject (ibitmap) ;
deleteobject (ibitmapl) ;



deletedc (memdc) ;

deletedc (memdcl) ;

deletedc (memdc?2)
end;

’



Q: How do I fill a TMemo from a PChar?

A: See also: How can | turn a memo's contents into a PChar?

procedure PutPCharIntoBlob( p: PChar; mf: TBlobField );
var
bs: TBlobStream;
begin
bs := TBlobStream.Create( mf, bmWrite );
try
bs.Write( p*, Strlen( p ) );
finally
bs.Free;
end;
end;



Q: How can | reference a field name with a space in a query?
A:

select * from MyTable
where MyTable."field with spaces" = 123



Q: How do | pass a variable to a query?

A: First, you must write a query that uses a variable.

Select Test."FName", Test."Salary Of Employee"
From Test
Where Test."Salary of Employee" > :val

Note: If you just write the field name as "salary of Employee™ you will get a
Capability Not Supported error. It must be Test."salary of Employee".

In this can the variable name is "val", but it can be whatever you want (of course).
Then, you go to the TQuery's params property and set the "val" param to whatever the
appropriate type is. In our example here we will call it an integer.

Next, you write the code that sets the param's value. We will be setting the value from
a TEdit box.

procedure TForml.ButtonlClick(Sender: TObject);
begin
with Queryl do
begin
Close;
ParamByName ('val') .AsInteger := StrTolInt (Editl.Text);
Open;
end;
end;

Note: you may want to place this code in a try..except block as a safety precaution.

If you want to use a LIKE in your query, you can do it this way:

Select * From customer
Where company like :CompanyName

procedure TForml.ButtonlClick (Sender: TObject);
begin
with Queryl do
begin
Close;
ParamByName ('CompanyName') .AsString := Editl.Text + 'S$';
Open;
end;
end;

The trick is in the concatenating of the percentage sign at the end of the parameter.



Q: How do | copy afile?

A: Here are several ways:

{This way uses a File stream.}
Procedure FileCopy( Const sourcefilename, targetfilename: String );
Var
S, T: TFileStream;
Begin
S := TFileStream.Create( sourcefilename, fmOpenRead );
try
T := TFileStream.Create( targetfilename, fmOpenWrite or fmCreate );
try
T.CopyFrom (S, S.Size ) ;
finally
T.Free;
end;
finally
S.Free;
end;
End;

{Here is one that uses a TMemoryStream:}
procedure FileCopy(const FromFile, ToFile: string);
begin
with TMemoryStream.Create do
try
LoadFromFile (FromFile) ;
SaveToFile (ToFile);
finally
Free;
end;
end;

{This way uses memory blocks for read/write.}
procedure FileCopy(const FromFile, ToFile: string);
var
FromF, ToF: file;
NumRead, NumWritten: Word;
Buf: array[l..2048] of Char;

begin
AssignFile (FromF, FromFile);
Reset (FromF, 1); { Record size =1 }
AssignFile (ToF, ToFile); { Open output file }
Rewrite (ToF, 1); { Record size =1 }
repeat

BlockRead (FromF, Buf, SizeOf (Buf), NumRead):;
BlockWrite (ToF, Buf, NumRead, NumWritten);
until (NumRead = 0) or (NumWritten <> NumRead) ;
System.CloseFile (FromF) ;
System.CloseFile (ToF) ;
end;



{This one uses LZCopy, which USES LZExpand.}
procedure CopyFile (FromFileName, ToFileName: string);

var
FromFile, ToFile: File;
begin
AssignFile (FromFile, FromFileName); { Assign FromFile to FromFileName }
AssignFile (ToFile, ToFileName) ; { Assign ToFile to ToFileName }
Reset (FromFile) ; { Open file for input }
try
Rewrite (ToFile) ; { Create file for output }
try
{ copy the file an if a negative value is returned raise an exception }
if LZCopy (TFileRec (FromFile) .Handle, TFileRec (ToFile) .Handle) < 0 then
raise Exception.Create('Error using LZCopy')
finally
CloseFile (ToFile); { Close ToFile }
end;
finally
CloseFile (FromFile) ; { Close FromFile }
end;
end;

This one is from Dr. Bob (Swart). The point of this one is that it contains a callback
function that gives you the ability to callback. This can be used for progress bars and
the like. Groetjes, Dr. Bob!

{$a+,B-,D-,F-,G+,I+,K+,L-,N+,P+,0-,R-, S+, T+,V-,W-, X+,Y-}
unit FileCopy;
(*
FILECOPY 1.5 (Public Domain)
Borland Delphi 1.0
Copr. (c) 1995-08-27 Robert E. Swart (100434.2072Q@compuserve.com)
P.O. box 799
5702 NP Helmond
The Netherlands
This unit implements a FastFileCopy procedure that is usable from
Borland Pascal (real mode, DPMI or Windows) and Borland Delphi. A
callback routine (or nil) can be given as extra argument.

Example of usage:

{SIFDEF WINDOWS}

uses FileCopy, WinCrt;
{SELSE}

uses FileCopy, Crt;
{SENDIF}

procedure CallBack(Position, Size: LonglInt); far;
var i: Integer;
begin

{ do you stuff here... }

GotoXY (1,1);



for i:=1 to (80 * Position) div Size do write('X'")
end {CallBack};

begin
FastFileCopy ('C:\AUTOEXEC.BAT', 'C:\AUTOEXEC.BAK', nil);
FastFileCopy ('C:\CONFIG.SYS', 'C:\CONFIG.BAK', CallBack)
end.
*)
interface
Type

TCallBack = procedure (Position, Size: LongInt); { export; }
procedure FastFileCopy(Const InFileName, OutFileName:

String;
CallBack: TCallBack);

implementation
{SIFDEF VER80}
uses SysUtils;
{$ELSE}
{SIFDEF WINDOWS}
uses WinDos;
{SELSE}
uses Dos;
{SENDIF}
{SENDIF}

procedure FastFileCopy (Const InFileName, OutFileName:
CallBack: TCallBack):;
{ 32Kbytes gives me the best results }

String;

Const BufSize = 8%*4096;
Type
PBuffer = "TBuffer;

TBuffer = Array[l..BufSize] of Byte;
var Size: Word;

Buffer: PBuffer;
infile,outfile: File;
SizeDone,SizeFile, TimeDateFile: LongInt;

begin
if (InFileName <> OutFileName) then
begin
Buffer := nil;

Assign (infile, InFileName) ;
System.Reset (infile, 1) ;
{$SIFDEF VERS80}
try
{SELSE}
begin
{SENDIF}
SizeFile := FileSize(infile);
Assign(outfile,OutFileName) ;
System.Rewrite (outfile,1);
{SIFDEF VERS80}
try
{$ELSE}
begin
{SENDIF}
SizeDone := 0;



end.

New (Buffer) ;
repeat
BlockRead (infile,Buffer”,BufSize, Size);
Inc (SizeDone, Size) ;
if (@CallBack <> nil) then
CallBack (SizeDone, SizeFile) ;
BlockWrite (outfile,Buffer”, Size)
until Size < BufSize;
{$SIFDEF VERS80}
FileSetDate (TFileRec (outfile) .Handle,
FileGetDate (TFileRec (infile) .Handle)) ;
{SELSE}
GetFTime (infile, TimeDateFile);
SetFTime (outfile, TimeDateFile);
{SENDIF}

{SIFDEF VERS80}

finally

{SENDIF}
if Buffer <> nil then Dispose (Buffer);
System.close (outfile)

end;

{SIFDEF VER8O0}
finally
{SENDIF}

end

System.close (infile)
end

{SIFDEF VER80}

else

Raise EInOutError.Create('File cannot be copied onto

{SENDIF}
end {FastFileCopy};

itself')



Q: How do | detect whether a drive exists or not?

A: Here are some different ways to do it:

function DoesDriveExist (DrivelLetter: char): string;
var i: integer;
begin
if Driveletter in ['A'..'Z'] then {Make it lower case.}
DriveLetter := chr (ord(DrivelLetter) or $20);
i := GetDriveType (ord(DrivelLetter) - ord('a'));
case 1 of
DRIVE REMOVABLE: result := 'floppy';
DRIVE FIXED: result := 'hard disk';
DRIVE REMOTE: result := 'network drive';
else result := 'does not exist';
end;
end;

function DoesDriveExist (DrivelLetter: char): boolean;
var

drives: TDriveComboBox;

i: integer;

begin

result := false;

drives := TDriveComboBox.create (application);

drives.parent := forml;

forml.listboxl.items := drives.items;

for 1 := drives.items.count - 1 downto 0 do {Note: this i1s case sensitive:
lower case.}

if drives.items.strings[i][1] = Driveletter then result := true;

drives.free; {...so that the combobox doesn't show.}

end;

Also, piskFree () Will return -1 if the drive does not exist.

Neil Rubenking wrote this code --

function DirExists(const S : String): Boolean;
VAR
OldMode : Word;
O0ldDir : String;
BEGIN
Result := True;
GetDir (0, 0ldDir); {save old dir for return}
OldMode := SetErrorMode (SEM FAILCRITICALERRORS); {if drive empty, except}
try try
ChDir (S) ;
except
ON EInOutError DO Result := False;
end;
finally

ChDir (0ldDir); {return to old dir}



SetErrorMode (OldMode); {restore old error mode}
end;
END;



for i := 1 to ParamCount do listboxl.items.add(paramStr(i));



Q: How do | set and reset the canvas.font.style property?
A:

canvas.font.style := [fsUnderline]; {set}
canvas.font.style : [1; {reset}

Because the property uses a list, sending an empty list clears it out.



What If Dr. Seuss Did Technical Writing?

Here's an easy game to play.
Here's an easy thing to say:

If a packet hits a pocket on a socket on a port,

And the bus is interrupted as a very last resort,

And the address of the memory makes your floppy disk abort,
Then the socket packet pocket has an error to report!

If your cursor finds a menu item followed by a dash,

And the double-clicking icon puts your window in the trash,

And your data is corrupted 'cause the index doesn't hash,

Then your situation's hopeless, and your system's gonna crash!

You can't say this?
What a shame sir!
We'll find you
Another game sir.

If the label on the cable on the table at your house,

Says the network is connected to the button on your mouse,
But your packets want to tunnel on another protocol,

That's repeatedly rejected by the printer down the hall,

And your screen is all distorted by the side effects of gauss
So your icons in the window are as wavy as a souse,

Then you may as well reboot and go out with a bang,
'‘Cause as sure as I'm a poet, the sucker's gonna hang!

When the copy of your floppy's getting sloppy on the disk,

And the microcode instructions cause unnecessary risc,

Then you have to flash your memory and you'll want to RAM your ROM.
Quickly turn off the computer and be sure to tell your mom!



PAYMENT( )

Returns the periodic amount required to repay a debt.

function payment (princ, int, term: double): double;
var temp: double;
begin

int := int / 100;

temp := exp(ln(int + 1) * term);

result := princ * ((int * temp) / (temp - 1));
end;
Syntax

PAYMENT (<principal expN>, <interest expN>, <term expN>)
<principal expN>

The original amount to be repaid over time.

<interest expN>

The interest rate per period expressed as a positive decimal number. Specify the
interest rate in the same time increment as the term. Itis to be expressed as a
percentage. The number is divided by 100 inside the function.

<term expN>
The number of payments. Specify the term in the same time increment as the interest.
Description

Use PAYMENT( ) to calculate the periodic amount (payment) required to repay a loan or
investment of <principal expN> amount in <term expN> payments. PAYMENT( )
returns a numeric value based on a fixed interest rate compounding over a fixed length
of time. If <principal expN> is positive, PAYMENT( ) returns a positive number. If
<principal expN> is negative, PAYMENT( ) returns a negative number. Express the
interest rate as a decimal. For example, if the annual interest rate is 9.5%,

<interest expN> is 9.5 for payments made annually.

Express <interest expN> and <term expN> in the same time increment. For example, if
the payments are monthly, express the interest rate per month, and the number of
payments in months. You would express an annual interest rate of 9.5%, for example,
as 9.5/12, which is the 9.5% divided by 12 months. The formula used to calculate
PAYMENT( ) is as follows:

term
int* (1 + int)"



pmt = princ * ———————————————————

where int = rate / 100 (as a percentage).

For the monthly payment required to repay a principal amount of $16860.68 in five
years, at 9% interest, the formula expressed as a dBASE expression looks like this:

MyVar := PAYMENT (16860.68, 9/12, 60) {Returns 350.00}



Q: How can | use a TList to hold variables?
A:

implementation

type
pLongInt = “LonglInt;

{$R *.DFM}

procedure TForml.ButtonlClick(Sender: TObject);
var
t: tlist;
1: longint;
begin
t := tlist.create;
1 := 123;
t.add(@l) ;
caption := IntToStr (pLongInt(t.items[0])");
t.free;
end;



Q: How do | determine if two strings sound alike?

A: Soundex function--determines whether two words sound alike. Written after reading
an article in PC Magazine about the Soundex algorithm. Pass the function a string. It
returns a Soundex value string. This value can be saved in a database or compared to
another Soundex value. If two words have the same Soundex value, then they sound
alike (more or less).

Note that the Soundex algorithm ignores the first letter of a word. Thus, "won" and
"one" will have different Soundex values, but "Won" and "Wunn" will have the same
values.

Soundex is especially useful in databases when one does not know how to spell a last
name.

Function Soundex (OriginalWord: string): string;
var

Tempstringl, Tempstring2: string;

Count: integer;

begin
Tempstringl := '';
Tempstring2 := '';
OriginalWord := Uppercase (OriginalWord); {Make original word uppercase}
Appendstr (Tempstringl, OriginalWord[l]); {Use the first letter of the word}
for Count := 2 to length(OriginalWord) do

{Assign a numeric value to each letter, except the first}
case OriginalWord[Count] of
'B','F','P','V': Appendstr (Tempstringl, '1l');
'‘c','g','g','K','Q','s'", 'X"'",'2"': Appendstr (Tempstringl, '2'");
'D','T': Appendstr (Tempstringl, '3'");
'L': Appendstr (Tempstringl, '4');
'M','N': Appendstr (Tempstringl, '5');
'R': Appendstr (Tempstringl, '6');
{All other letters, punctuation and numbers are ignored}
end;
Appendstr (Tempstring2, OriginalWord([1l]):;
{Go through the result removing any consecutive duplicate numeric values.}
for Count:=2 to length(Tempstringl) do
if Tempstringl[Count-1]<>Tempstringl[Count] then
Appendstr (Tempstring2, Tempstringl [Count]) ;
Soundex:=Tempstring2; {This is the soundex value}
end;

SoundAlike--pass two strings to this function. It returns True if they sound alike, False
if they don't. Simply calls the Soundex function.

Function SoundAlike (Wordl, Word2: string): boolean;

begin
if (Soundex (Wordl) = Soundex (Word2)) then result := True
else result := False;

end;






Q: How can | tell the length in bytes of a memo field?

Background: | have been using the memo field and have been using the getTextLen to
get the size | need to set my buffer before getting the information out of my large memo
field. However, | have notice, that if the Memo field is larger than 256 character, the
getTexLen will return a number only 0-255. How am | going to set my buffer to use
GetTextBuf?

A: The lines property of a memo field is a TStrings. You could try something like this:

function GetMemoSize (TheMemo: TObject): integer;
var i: integer;
begin

result := 0;

with (TheMemo as TMemo) .lines do

for i := count - 1 downto 0 do
result := result + length(strings([i]);

end;

This can be called with t1ntvariable := GetMemoSize (memol) ;



Q: How can | get the windows or dos versions?

A: The API call of GetVersions will do it, but the information is encrypted into a longint.
Here is how to get and decrypt the information:

Type TGetVer = record WinVer, WinRev, DosRev, DosVer: Byte; end;

procedure TForml.ButtonlClick (Sender: TObject);
var AllVersions: longint;

begin
AllVersions := GetVersion;
editl.text := IntToStr (TGetVer (AllVersions) .WinVer) + '.' +
IntToStr (TGetVer (AllVersions) .WinRev) ;
edit2.text := IntToStr (TGetVer (AllVersions) .DosVer) + '.' +
IntToStr (TGetVer (AllVersions) .DosRev) ;
end;
Note: The values that windows displays for the versions and the values that
it returns through its API call are not always the same. e.g. The workgroup

version displays as 3.10 rather than 3.11.



Q: How do | detect for a co-processor?
Q: How can | tell which CPU is being used?

A: Here is the short version. The problem here is that it doesn't detect the pentium.

var winFlags: LongInt;
begin
winFlags := GetWinFlags;
{ Get math coprocessor status }
If winFlags And WF 80x87 > 0 Then Caption := 'Present'
Else Caption := 'Not Present';

{ Get CPU type }

If winFlags And WF CPU486 > O Then editl.text := '486' {also pentium}
else If winFlags And WE CPU386 > 0 Then editl.text := '386'
else If winFlags And WF CPU286 > 0 Then editl.text := '286';

end;

Here is a version that will work with the pentium:

{ This code comes from Intel, and has been modified for Delphi's
inline assembler.

}
unit Cpu;
interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, Buttons;

type
{ All the types currently known. As new types are created,
add suitable names, and extend the case statement in
the GetCpuType function.

}
TCPUType = (i8086CPU, i286CPU, i386CPU, i486CPU, iPentiumCPU);

TForml = class (TForm)
Editl: TEdit;
Labell: TLabel;
BitBtnl: TBitBtn;
procedure FormCreate (Sender: TObject):;
procedure BitBtnlClick (Sender: TObject);
private
{ Return the type of the current CPU }
function CpuType: TCPUType;
{ Return the type as a string }
function GetCPUType: String;
public
end;

var



Forml: TForml;
{ Define the winFlags variable for 286 check }
winFlags: Longint;

implementation

{$SR *.DFM}

{ Get CPU type }
function TForml.GetCPUType: String;
var
kind: TCPUType;
begin
if winFlags and WF CPU286 > 0 then
Result := '80286"'
else
begin
kind := CpuType;
case kind of
18086CPU:
Result
1386CPU:
Result := '80386"';
1486CPU:
Result := '80486"';
iPentiumCPU:
Result := 'Pentium';
else
{ Try to be flexible for future cpu types, e.g., P6. }
Result := Format ('P%d', [Ord(kind)]):;
end;
end;
end;

'8086";

{ Assembly function to get CPU type including Pentium and later }
function TForml.CpuType: TCPUType; assembler;
asm

push DS

{ First check for an 8086 CPU }

{ Bits 12-15 of the FLAGS register are always set on the }

{ 8086 processor. }

pushf { save EFLAGS }

pop bx { store EFLAGS in BX }

mov ax,0fffh { clear bits 12-15 }

and ax,bx { in EFLAGS }

push ax { store new EFLAGS wvalue on stack }
popf { replace current EFLAGS value }
pushf { set new EFLAGS }

pop ax { store new EFLAGS in AX }

and ax,0£000h { if bits 12-15 are set, then CPU }
cmp ax,0£000h { is an 8086/8088 }

mov ax, 18086CPU { turn on 8086/8088 flag }
Jje @@End CpuType

{ 80286 CPU check }
{ Bits 12-15 of the FLAGS register are always clear on the }



80286 processor. }
Commented out because 'pop ax' crashes it to the DOS prompt when running }
with a Delphi form on some Machines.}

or bx,0£000h } { try to set bits 12-15 }
push bx }
popf }
pushf }
{ pop ax } { This crashes Delphi programs on
some machines }
{ and ax,0£f000h } { if bits 12-15 are cleared, CPU=80286 }
{ mov ax, 1286CPU } { turn on 80286 flag }
{ Jz @REnd CpuType }

{ To test for 386 or better, we need to use 32 bit instructions,
but the 16-bit Delphi assembler does not recognize the 32 bit opcodes
or operands. Instead, use the 66H operand size prefix to change
each instruction to its 32-bit equivalent. For 32-bit immediate
operands, we also need to store the high word of the operand immediately
following the instruction. The 32-bit instruction is shown in a comment
after the 66H instruction.

1386 CPU check }

The AC bit, bit #18, is a new bit introduced in the EFLAGS }
register on the 1486 DX CPU to generate alignment faults. }
This bit can not be set on the 1386 CPU. }

i

db 66h { pushfd }

pushf

db 66h { pop eax }

pop ax { get original EFLAGS }
db 66h { mov ecx, eax }

mov CXx,ax { save original EFLAGS }

db 66h { xor eax,40000h }
xor ax,0h { flip AC bit in EFLAGS }
dw 0004h

db 66h { push eax }

push ax { save for EFLAGS }

db 66h { popfd }

popf { copy to EFLAGS }

db 66h { pushfd }

pushf { push EFLAGS }

db 66h { pop eax }

pop ax { get new EFLAGS value }

db 66h { xor eax,ecx }

XOr ax,Ccx { can't toggle AC bit, CPU=Intel386 }
mov ax, 1386CPU { turn on 386 flag }

je @Q@End CpuType

{ 1486 DX CPU / 1487 SX MCP and i486 SX CPU checking }

{ Checking for ability to set/clear ID flag (Bit 21) in EFLAGS }
{ which indicates the presence of a processor }

{ with the ability to use the CPUID instruction. }

db 66h { pushfd }
pushf { push original EFLAGS }
db 66h { pop eax }

pop ax { get original EFLAGS in eax }



db 66h { mov ecx, eax }

mov CcXx,ax { save original EFLAGS in ecx }
db 66h { xor eax,200000h }

xor ax,0h { flip ID bit in EFLAGS }

dw 0020h

db 66h { push eax }

push ax { save for EFLAGS }

db 66h { popfd }

popf { copy to EFLAGS }

db 66h { pushfd }

pushf { push EFLAGS }

db 66h { pop eax }

pop ax { get new EFLAGS value }

db 66h { xor eax, ecx }

XOr ax, Cx

mov ax, 1486CPU { turn on 1486 flag }

je Q@End CpuType { 1f ID bit cannot be changed, CPU=486 }

{ without CPUID instruction functionality }

{ Execute CPUID instruction to determine vendor, family, }

{ model and stepping. The use of the CPUID instruction used }
{ in this program can be used for B0 and later steppings }

{ of the P5 processor. }

db 66h { mov eax, 1 }

mov ax, 1 { set up for CPUID instruction }

dw O

db 66h { cpuid }

db OFh { Hardcoded opcode for CPUID instruction }
db 0a2h

db 66h { and eax, OFO0O0H }

and ax, OFOOH { mask everything but family }

dw O

db 66h { shr eax, 8 }

shr ax, 8 { shift the cpu type down to the low byte }
sub ax, 1 { subtract 1 to map to TCpuType }

@E@End CpuType:
pop ds
end;

{ Get the Windows Flags to check for 286. The 286 assembly code
crashes due to a problem when using with Delphi Forms on some machines.
This
method is safer.
}
procedure TForml.FormCreate (Sender: TObject);
begin
winFlags := GetWinFlags;
end;

{ Call the CPU function and assign it to the Edit box }
procedure TForml.BitBtnlClick (Sender: TObject);
begin
Editl.Text := GetCPUType;
end;



end.



Q: If you have the date 1/1/2000 and run the following code:
DateToStr (StrToDate ('1/1/2000'")) the year gets changed from 2000 to 1900. What's
the best way to handle this?

A: The value of the typed constant ShortDateTime in WIN.INI determines how
DateToStr and StrToDate convert strings. The default is dd/mm/yy - two digit year. |
believe setting ShortDateTime := 'dd/mm/yyyy" will solve your problem.



Q: How can | make interbase run faster?

A: When using Interbase, the screen tries to update for every update. If you disable
the connections while performing actions like lookups or GotoKey, it will be much faster.

e.g.

dbLookupListl.Enabled := false;
dbGridl.DataSource := nil;
dbLookupListl.Enabled := false;
with tablel do
begin

setkey;

fields[0] .AsString := editl.text;

DisableControls;

GotoKey;

EnableControls;
end;
dbLookupListl.Enabled := true;
dbgridl.DataSource := DataSourcel;
LockWindowUpdate (0) ;



ARRAY: searching and sorting routines:

Here is the UNIT with the code.

Here is the manual that describes the code.

Here is a program to compare the sorting algorithms.
Here is a program to test the sorts.




select * from MyTable
where fieldl = (select max(fieldl) from MyTable)



Q: How do | highlight selected fields on a TStringGrid?
A:

procedure TForml.ButtonlClick (Sender: TObject);
var
i: integer;
begin
stringGridl.DefaultDrawing := false;
with StringGridl do
begin
colCount := 26;
RowCount := 99;
for i := 1 to 20 do
cells([i, 0] := chr(i + 64);
for i := 0 to 99 do
cells[0, 1 + 1] := IntToStr(i);
end;
end;

procedure TForml.StringGridlDrawCell (Sender: TObject; Col, Row:
Rect: TRect; State: TGridDrawState);

begin
if (stringGridl.cells[col, row][1l] = '1l') and (Col = 0) then
begin
stringGridl.canvas.brush.color := clMaroon;
stringGridl.canvas.font.color := clWhite;
end
else
begin
stringGridl.canvas.brush.color := clWhite;
stringGridl.canvas.font.color := clMaroon;
end;

stringGridl.canvas.fillRect (rect);

stringGridl.canvas.TextRect (Rect, Rect.Left + 3, Rect.Top + 3,

StringGridl.cells[col, row]l);
end;

Longint;



Q: How do | access hardware memory directly?

A: In real mode, to access the shift states you would use the following code.

var
ShiftStates: Word;

begin
ShiftStates := MemW[$0040: $00177];

enc.i;
In protected mode, it is necessary to set up a selector to access memory directly.

var
ShiftSel: Word;
ShiftStates: Word;

begin
ShiftSel := AllocSelector (DSeqg);
SetSelectorBase (ShiftSel, $00400);
SetSelectorLimit (ShiftSel, $10000);
ShiftStates := MemW[ShiftSel: $0017];

end;

Notice that in SetSelectorBase the value $00400 is used instead of $0040. The value
represents a complete 20-bit linear address. For instance, if you needed to set a
selector to point to the real mode segment $D000, you would use the value $D0000 in
the call to SetSelectorBase.



{Win32 SDK header files (SHELLOBJ) by Pat Ritchey}

Unit ShellOBJ;
interface

uses
Windows,
Messages,
OLEZ2,
COMMCTRL,
ShellAPT,
REGSTR;

Object identifiers in the explorer's name space (ItemID and IDList) }

All the items that the user can browse with the explorer (such as files, }
directories, servers, work-groups, etc.) has an identifier which is unique }
among items within the parent folder. Those identifiers are called item }
IDs (SHITEMID). Since all its parent folders have their own item IDs, }
any items can be uniquely identified by a list of item IDs, which is
called }

{ an ID list (ITEMIDLIST). }

D e T e

{ ID lists are almost always allocated by the task allocator (see some }

{ description below as well as OLE 2.0 SDK) and may be passed across }

{ some of shell interfaces (such as IShellFolder). Each item ID in an ID
list }

{ is only meaningful to its parent folder (which has generated it), and all }
{ the clients must treat it as an opaque binary data except the first two }

{ bytes, which indicates the size of the item ID. }

When a shell extension -- which implements the IShellFolder interace -- }
generates an item ID, it may put any information in it, not only the data }
with that it needs to identifies the item, but also some additional }
information, which would help implementing some other functions efficiently.

For example, the shell's IShellFolder implementation of file system items }
stores the primary (long) name of a file or a directory as the item }
identifier, but it also stores its alternative (short) name, size and date }
etc. }

i i i T el e T NP N

{ When an ID list is passed to one of shell APIs (such as
SHGetPathFromIDList), }

{ it is always an absolute path -- relative from the root of the name space, }
{ which is the desktop folder. When an ID list is passed to one of
IShellFolder }

{ member function, it is always a relative path from the folder (unless it }

{ is explicitly specified). }

const
CLSID ShellDesktop: TGUID = (
D1:$00021400; D2:$0000; D3:$0000; D4:
($C0,$00,500,$00,500,500,500,546));
CLSID ShellLink: TGUID = (



D1:500021401; D2:$0000; D3:50000; D4:
($C0,$00,500,$00,500,$00,500,$46)) ;

IID IContextMenu : TGUID = (

D1:$000214E4; D2:350000; D3:$0000; D4:
($C0,$00,$00,500,500,500,500,546));
IID_IShellFolder : TGUID = (

D1:$5000214E6; D2:$0000; D3:$0000; D4:
($Cco0,$00,$00,$00,500,500,500,546));
IID_IShellEXtInit : TGUID = (

D1:$000214E8; D2:50000; D3:$0000; D4:
($C0,$00,500,$00,500,$00,500,$46)) ;

IID IShellPropSheetExt : TGUID = (

D1:$000214E9; D2:50000; D3:$0000; D4:
($C0,$00,500,$00,500,$00,500,$46)) ;

IID IExtractIcon : TGUID = (

D1:$000214EB; D2:50000; D3:$0000; D4:
($C0,$00,500,$00,500,$00,500,546));
IID_IShellLink : TGUID = (

D1:$000214EE; D2:50000; D3:50000; D4:
($C0,$00,500,$00,500,$00,500,$46));

IID IShellCopyHook : TGUID = (

D1:$000214EF; D2:50000; D3:50000; D4:
($C0, $00,$00,500,$00,500,500,5406)) ;

IID IFileViewer : TGUID = (

D1:$000214F0; D2:50000; D3:$0000; D4:
($C0, $00,$00,500,$00,500,500,5406)) ;
IID_IEnumIDLiSt : TGUID = (

D1:$000214F2; D2:350000; D3:$0000; D4:
(sCco0,$00,$00,500,500,500,500,546));
IID_IFileViewerSite : TGUID = (

D1:$000214F3; D2:$50000; D3:$0000; D4:
($Cc0,$00,$00,$00,500,500,500,546));

{ SHITEMID -- Item ID }
type
PSHItemID = ~"TSHItemID;
TSHItemID = record { mkid }
cb:word; { Size of the ID (including cb itself) }
abID:array[0..0] of BYTE; { The item ID (variable length) }
end;
{ ITEMIDLIST -- List if item IDs (combined with O-terminator) }

PItemIDList = "TItemIDList;
TItemIDList = record { idl }
mkid: TSHITEMID;
end;

—_~

Task allocator API }

All the shell extensions MUST use the task allocator (see OLE 2.0 }
programming guild for its definition) when they allocate or free }
memory objects (mostly ITEMIDLIST) that are returned across any }
shell interfaces. There are two ways to access the task allocator }
from a shell extension depending on whether or not it is linked with }
OLE32.DLL or not (virtual; stdcall; abstractly for efficiency). }

e e T i e T NN



{ (1) A shell extension which calls any OLE API (i.e., linked with }
{ OLE32.DLL) should call OLE's task allocator (by retrieving }
{ the task allocator by calling CoGetMalloc API). }

{ (2) A shell extension which does not call any OLE API (i.e., not linked }
{ with OLE32.DLL) should call the shell task allocator API (defined }

{ below), so that the shell can quickly loads it when OLE32.DLL is not }

{ loaded by any application at that point. }

{ Notes: }
{ In next version of Windowso release, SHGetMalloc will be replaced by }

{ the following macro. }

{ #define SHGetMalloc (ppmem) CoGetMalloc (MEMCTX TASK, ppmem) }

function SHGetMalloc (var ppMalloc: IMALLOC) :HResult;

{ IContextMenu interface }
{ [OverView] }
{ The shell uses the IContextMenu interface in following three cases. }

{ case-1: The shell is loading context menu extensions. }

{ When the user clicks the right mouse button on an item within the

shell's }

{ name space (i.g., file, directory, server, work-group, etc.), it creates }
{ the default context menu for its type, then loads context menu extensions }
{ that are registered for that type (and its base type) so that they can }

{ add extra menu items. Those context menu extensions are registered at }

{ HKCR\beginProgIDend\shellex\ContextMenuHandlers. }

{ case-2: The shell is retrieving a context menu of sub-folders in extended }
{ name-space. }

{ When the explorer's name space is extended by name space extensions, }

{ the shell calls their IShellFolder::GetUIObjectOf to get the IContextMenu }
{ objects when it creates context menus for folders under those extended }

{ name spaces. }

{ case-3: The shell is loading non-default drag and drop handler for
directories. }

{ When the user performed a non-default drag and drop onto one of file }
{ system folders (i.e., directories), it loads shell extensions that are }
{ registered at HKCR\beginProgIDend\DragDropHandlers. }

{ [Member functions] }

{ IContextMenu::QueryContextMenu }

{ This member function may insert one or more menuitems to the specified }

{ menu (hmenu) at the specified location (indexMenu which is never be -1). }
{ The IDs of those menuitem must be in the specified range (idCmdFirst and }
{ 1idCmdLast). It returns the maximum menuitem ID offset (ushort) in the }

{ 'code' field (low word) of the scode. }



{ The uFlags specify the context. It may have one or more of following }
{ flags. }

{ CMF _DEFAULTONLY: This flag is passed if the user is invoking the default }
{ action (typically by double-clicking, case 1 and 2 only). Context menu }
{ extensions (case 1) should not add any menu items, and returns NOERROR. }

{ CMF_VERBSONLY: The explorer passes this flag if it is constructing }

{ a context menu for a short-cut object (case 1 and case 2 only). If this }
{ flag is passed, it should not add any menu-items that is not appropriate }
{ from a short-cut. }

{ A good example is the 'Delete' menuitem, which confuses the user }

{ Dbecause it is not clear whether it deletes the link source item or the }

{ 1link itself. }

{ CMF_EXPLORER: The explorer passes this flag if it has the left-side pane }
{ (case 1 and 2 only). Context menu extensions should ignore this flag. }

{ High word (l6-bit) are reserved for context specific communications }
{ and the rest of flags (13-bit) are reserved by the system. }

{ IContextMenu: :InvokeCommand }

{ This member is called when the user has selected one of menuitems that }
{ are inserted by previous QueryContextMenu member. In this case, the }

{ LOWORD (lpici->1pVerb) contains the menuitem ID offset (menuitem ID - }

{ 1idCmdFirst). }

{ This member function may also be called programmatically. In such a

case, }

{ 1lpici->1lpVerb specifies the canonical name of the command to be invoked, }
{ which is typically retrieved by GetCommandString member previously. }

Parameters in lpci: }

{

{ cbSize -- Specifies the size of this structure (sizeof (*lpci)) }

{ hwnd -- Specifies the owner window for any message/dialog box. }

{ fMask -- Specifies whether or not dwHotkey/hIcon paramter is valid. }

{ lpVerb -- Specifies the command to be invoked. }

{ lpParameters -- Parameters (optional) }

{ lpDirectory -- Working directory (optional) }

{ nShow —-- Specifies the flag to be passed to ShowWindow (SW_*). }

{ dwHotKey —-- Hot key to be assigned to the app after invoked (optional). }
{ hIcon -- Specifies the icon (optional). }

{ IContextMenu::GetCommandString }

{ This member function is called by the explorer either to get the }

{ ~canonical (language independent) command name (uFlags == GCS VERB) or }

{ the help text ((uFlags & GCS _HELPTEXT) != 0) for the specified command. }
{ The retrieved canonical string may be passed to its InvokeCommand }

{ member function to invoke a command programmatically. The explorer }

{ displays the help texts in its status bar; therefore, the length of }

{ the help text should be reasonably short (<40 characters). }

{ Parameters: }



{ idCmd -- Specifies menuitem ID offset (from idCmdFirst) }

{ uFlags -- Either GCS VERB or GCS HELPTEXT }
{ pwReserved -- Reserved (must pass NULL when calling, must ignore when
called) }
{ pszName -- Specifies the string buffer. }
{ cchMax -- Specifies the size of the string buffer. }
[mmmmmmmmm o
const
{ QueryContextMenu uFlags }
CMF_NORMAL = $00000000;
CMF DEFAULTONLY = $00000001;
CMF VERBSONLY = $00000002;
CMF EXPLORE = $00000004;
CMF_RESERVED = Sff£f£0000 { View specific };

{ GetCommandString uFlags }

GCS_VERB =500000000 { canonical verb };
GCS_HELPTEXT =500000001 { help text (for status bar) };
GCS_VALIDATE =$00000002 { validate command exists };
CMDSTR_NEWFOLDER = 'NewFolder';

CMDSTR_VIEWLIST = 'ViewList';

CMDSTR VIEWDETAILS = 'ViewDetails';

CMIC_ MASK HOTKEY SEE_MASK_HOTKEY;

CMIC MASK ICON = SEE MASK_ ICON;

CMIC MASK FLAG NO UI = SEE MASK FLAG NO UI;

CMIC MASK MODAL =580000000 (* ; Internal *);

(*!! CMIC VALID SEE FLAGS = SEE VALID CMIC FLAGS; (* ; Internal *)
type

PCMInvokeCommandInfo = “"TCMInvokeCommandInfo;

TCMInvokeCommandInfo = record

cbSize:DWORD; { must be sizeof (CMINVOKECOMMANDINFO) }

fMask :DWORD;
hwnd:HWND;
lpVerb:LPCSTR;

any combination of CMIC MASK * }

might be NULL (indicating no owner window) }
either a string of MAKEINTRESOURCE (idOffset) 1}
lpParameters:LPCSTR; might be NULL (indicating no parameter) }
lpDirectory:LPCSTR; might be NULL (indicating no specific directory)
nShow:integer; { one of SW_ values for ShowWindow () API }

e e e i

dwHotKey : DWORD;
hIcon:THANDLE;
end;

IContextMenu = class (IUnknown)
function QueryContextMenu (Menu:HMENU; indexMenu:UINT;
1dCmdFirst:UINT; idCmdLast:UINT;
uFlags:UINT) :HResult; wvirtual; stdcall;
abstract;

function InvokeCommand (lpici: PCMINVOKECOMMANDINFO): HResult; virtual;
stdcall; abstract;



function GetCommandString (idCmd:UINT; uType:UINT; var pwReserved:UINT;
pszName:LPSTR; cchMax:UINT) :HResult; virtual;
stdcall; abstract;
end;

{ Interface: IShellExtInit }

The IShellExtInit interface is used by the explorer to initialize shell }
extension objects. The explorer (1) calls CoCreatelnstance (or equivalent) }
with the registered CLSID and IID IShellExtInit, (2) calls its Initialize }
member, then (3) calls its QueryInterface to a particular interface (such }
as IContextMenu or IPropSheetExt and (4) performs the rest of operation. }

i e

{ [Member functions] }
{ IShellExtInit::Initialize }
{ This member function is called when the explorer is initializing either }

{ context menu extension, property sheet extension or non-default drag-drop }
{ extension. }

{ Parameters: (context menu or property sheet extension) }

{ pidlFolder -- Specifies the parent folder }

{ lpdobj -- Spefifies the set of items selected in that folder. }

{ hkeyProgID —-- Specifies the type of the focused item in the selection. }
{ Parameters: (non-default drag-and-drop extension) }

{ pidlFolder -- Specifies the target (destination) folder }

{ lpdobj -- Specifies the items that are dropped (see the description }

{ about shell's clipboard below for clipboard formats). }

{ hkeyProgID -- Specifies the folder type. }

{ }
type

IShellExtInit = class (IUnknown)
function Initialize(pidlFolder:PItemIDList;
lpdobj: IDataObject;
hKeyProgID:HKEY) :HResult; virtual; stdcall;
abstract;
end;

{ Interface: IShellPropSheetExt }
{ The explorer uses the IShellPropSheetExt to allow property sheet }

{ extensions or control panel extensions to add additional property }
{ sheet pages. }

{ [Member functions] }



{ IShellPropSheetExt::AddPages }

{ The explorer calls this member function when it finds a registered }
{ property sheet extension for a particular type of object. For each }

{ additional page, the extension creates a page object by calling }
{ CreatePropertySheetPage API and calls lpfnAddPage. }

{ Parameters: }

{ lpfnAddPage -- Specifies the callback function. }

{ lParam -- Specifies the opaque handle to be passed to the callback
function. }

{ IShellPropSheetExt::ReplacePage }

{ The explorer never calls this member of property sheet extensions. The }
{ explorer calls this member of control panel extensions, so that they }

{ can replace some of default control panel pages (such as a page of }

{ mouse control panel). }

{ Parameters: }

{ uPageID -- Specifies the page to be replaced. }

{ lpfnReplace Specifies the callback function. }

{ lParam -- Specifies the opaque handle to be passed to the callback
function. }

type
IShellPropSheetExt = class (IUnknown)
function AddPages (lpfnAddPage: TFNADDPROPSHEETPAGE;
lParam:LPARAM) :HResult; virtual; stdcall; abstract;
function ReplacePage (uPageID:UINT;
lpfnReplaceWith: TFNADDPROPSHEETPAGE;
lParam:LPARAM) :HResult; virtual; stdcall; abstract;
end;

{ IExtractlIcon interface }
{ This interface is used in two different places in the shell. }
{ Case-1: Icons of sub-folders for the scope-pane of the explorer. }

It is used by the explorer to get the 'icon location' of }
sub-folders from each shell folders. When the user expands a folder }
in the scope pane of the explorer, the explorer does following: }

(1) binds to the folder (gets IShellFolder), }

(2) enumerates its sub-folders by calling its EnumObjects member, }

(3) calls its GetUIObjectOf member to get IExtractIcon interface }

for each sub-folders. }

In this case, the explorer uses only IExtractIcon::GetIconLocation }
member to get the location of the appropriate icon. An icon location }
always consists of a file name (typically DLL or EXE) and either an icon }
resource or an icon index. }

i e e N T N e e T T



{ Case-2: Extracting an icon image from a file }

{ It is used by the shell when it extracts an icon image }

{ from a file. When the shell is extracting an icon from a file, }

{ it does following: }

{ (1) creates the icon extraction handler object (by getting its CLSID }
{ under the beginProgIDend\shell\ExtractIconHanler key and calling }
{ CoCreatelInstance requesting for IExtractIcon interface). }

{ Calls IExtractIcon::GetIconLocation. }

{ Then, calls IExtractIcon::Extract with the location/index pair. }
{ If (3) returns NOERROR, it uses the returned icon. }

{ Otherwise, it recursively calls this logic with new location }

{ assuming that the location string contains a fully qualified path
name. }

—_— e~ o~ —~

2)
3)
4)
5)

From extension programmer's point of view, there are only two cases }
where they provide implementations of IExtractIcon: }

Case-1) providing explorer extensions (i.e., IShellFolder). }

Case-2) providing per-instance icons for some types of files. }

e e )

{ Because Case-1 is described above, we'll explain only Case-2 here. }

When the shell is about display an icon for a file, it does following: }

(1) Finds its ProgID and ClassID. }

(2) If the file has a ClassID, it gets the icon location string from the }
'DefaultIcon’' key under it. The string indicates either per-class }
icon (e.g., 'FOOBAR.DLL,2') or per-instance icon (e.g., '$1,1"). }

(3) If a per-instance icon is specified, the shell creates an icon }
extraction handler object for it, and extracts the icon from it }
(which 1is described above). }

{ It is important to note that the shell calls
IExtractIcon::GetIconLocation }

{ first, then calls IExtractIcon::Extract. Most application programs }

that support per-instance icons will probably store an icon location }
(DLL/EXE name and index/id) rather than an icon image in each file. }

In those cases, a programmer needs to implement only the GetIconLocation }
member and it Extract member simply returns S FALSE. They need to }
implement Extract member only if they decided to store the icon images }
within files themselved or some other database (which is very rare). }

e e N T T

{ [Member functions] }

{ IExtractIcon::GetIconLocation }
{ This function returns an icon location. }

{ Parameters: }

{ uFlags [in] -- Specifies if it is opened or not (GIL OPENICON or 0) }
{ szIconFile [out] -- Specifies the string buffer buffer for a location
name. }

{ cchMax [in] -- Specifies the size of szIconFile (almost always

MAX PATH) }



piIndex [out] -- Sepcifies the address of UINT for the index. }
pwFlags [out] -- Returns GIL * flags }
Returns: }

NOERROR, if it returns a valid location; S FALSE, if the shell use a }
default icon. }

e

{ Notes: The location may or may not be a path to a file. The caller can }
{ not assume anything unless the subsequent Extract member call returns }
{ S _FALSE. }

{ if the returned location is not a path to a file, GIL NOTFILENAME should }
{ be set in the returned flags. }

{ IExtractIcon::Extract }

{ This function extracts an icon image from a specified file. }

NOERROR, if it extracted the from the file. }
S FALSE, if the caller should extract from the file specified in the }

{ Parameters: }
{ pszFile [in] -- Specifies the icon location (typically a path to a
file). }
{ nIconIndex [in] -- Specifies the icon index. }
{ phiconLarge [out] -- Specifies the HICON variable for large icon. }
{ phiconSmall [out] -- Specifies the HICON variable for small icon. }
{ nIconSize [in] -- Specifies the size icon required (size of large icon) }
{ LOWORD is the requested large icon size }
{ HIWORD is the requested small icon size }
{ Returns: }
{
{
{ location. }
[mmmmmm e e e )
{ GetIconLocation () input flags }
const
GIL OPENICON =50001 { allows containers to specify an 'open'
look };
GIL FORSHELL =350002 { icon is to be displayed in a ShellFolder };
{ GetIconLocation() return flags }
GIL SIMULATEDOC =50001 { simulate this document icon for this };
GIL PERINSTANCE =350002 { icons from this class are per instance (each
file has its own) };
GIL PERCLASS =50004 { icons from this class per class (shared for
all files of this type) };
GIL NOTFILENAME =50008 { location is not a filename, must
call ::Extract };
GIL DONTCACHE =$0010 { this icon should not be cached };
type
IExtractIcon = class (IUnknown) { exic }

function GetIconLocation (uFlags:UINT; szIconFile:LPSTR; cchMax:UINT;
var pilIndex:integer;
var pwFlags:UINT) :HResult; wvirtual; stdcall;
abstract;



function Extract (pszFile:LPCSTR; nIconIndex:UINT; var phiconLarge:HICON;
var phiconSmall:HICON;
nIconSize:UINT) :HResult; virtual; stdcall; abstract;
end;

const
{ IShellLink::Resolve fFlags }
SLR_NO_UTI = $0001;
SLR ANY MATCH = $0002;
SLR UPDATE = $0004;
{ IShelllink::GetPath fFlags }
SLGP_SHORTPATH = $0001;
SLGP_UNCPRIORITY = $0002;
type
IShelllLink = class (IUnknown) { sl }

function GetPath (pszFile:LPSTR; cchMaxPath:integer;
var pfd:TWin32FindData;
fFlags:DWORD) :HResult; virtual; stdcall; abstract;

function GetIDList (var ppidl:PITEMIDLIST) :HResult; virtual; stdcall;

abstract;
function SetIDList (pidl:PITEMIDLIST) :HResult; virtual; stdcall; abstract;

function GetDescription (pszName:LPSTR; cchMaxName:integer) :HResult;
virtual; stdcall; abstract;

function SetDescription (pszName:LPSTR) :HResult; virtual; stdcall;
abstract;

function GetWorkingDirectory (pszDir:LPSTR; cchMaxPath:integer) :HResult;
virtual; stdcall; abstract;

function SetWorkingDirectory (pszDir:LPSTR) :HResult; virtual; stdcall;
abstract;

function GetArguments (pszArgs:LPSTR; cchMaxPath:integer) :HResult; virtual;

stdcall; abstract;
function SetArguments (pszArgs:LPSTR) :HResult; virtual; stdcall; abstract;

function GetHotkey (var pwHotkey:word) :HResult; virtual; stdcall; abstract;
function SetHotkey (wHotkey:word) :HResult; virtual; stdcall; abstract;

function GetShowCmd (var piShowCmd:integer) :HResult; virtual; stdcall;
abstract;
function SetShowCmd (iShowCmd:integer) :HResult; virtual; stdcall; abstract;

function GetIconLocation (pszIconPath:LPSTR; cchIconPath:integer;
var pilcon:integer) :HResult; wvirtual; stdcall;
abstract;
function SetIconLocation(pszIconPath:LPSTR; ilIcon:integer) :HResult;
virtual; stdcall; abstract;



function SetRelativePath (pszPathRel:LPSTR; dwReserved:DWORD) :HResult;
virtual; stdcall; abstract;

function Resolve (Wnd:HWND; fFlags: DWORD) :HResult; virtual; stdcall;
abstract;

function SetPath (pszFile:LPSTR) :HResult; virtual; stdcall; abstract;
end;

{ ICopyHook Interface }

{ The copy hook is called whenever file system directories are }

{ copy/moved/deleted/renamed via the shell. It is also called by the shell
{ on changes of status of printers. }

{ Clients register their id under STRREG SHEX COPYHOOK for file system
hooks }

{ and STRREG SHEx PRNCOPYHOOK for printer hooks. }

{ the CopyCallback is called prior to the action, so the hook has the
chance }

{ to allow, deny or cancel the operation by returning the falues: }

{ IDYES - means allow the operation }

{ IDNO - means disallow the operation on this file, but continue with
{ any other operations (eg. batch copy) }

{ IDCANCEL - means disallow the current operation and cancel any pending
{ operations }

{ arguments to the CopyCallback }

{ hwnd - window to use for any UI }

{ wFunc - what operation is being done }

{ wFlags - and flags (FOF_*) set in the initial call to the file

operation }
{ pszSrcFile - name of the source file }
{ dwSrcAttribs - file attributes of the source file }
{ pszDestFile - name of the destiation file (for move and renames) }
{ dwDestAttribs - file attributes of the destination file }
e
type
ICopyHook = class (IUnknown) { sl }

function CopyCallback (Wnd:HWND;wEFunc:UINT; wFlags:UINT;
pszSrcFile:LPSTR; dwSrcAttribs:DWORD;
pszDestFile:LPSTR; dwDestAttribs:DWORD) :UINT;
virtual; stdcall; abstract;
end;

type
IFileViewerSite = class (IUnknown)
function SetPinnedWindow (Wnd:HWND) :HResult; virtual; stdcall; abstract;
function GetPinnedWindow (var Wnd:HWND) :HResult; virtual; stdcall;
abstract;
end;



IFileViewer Interface }

Implemented in a FileViewer component object. Used to tell a }
FileViewer to PrintTo or to view, the latter happening though }
ShowInitialize and Show. The filename is always given to the }
viewer through IPersistFile. }

e e e ]

type
PFVShowInfo = "TFVShowInfo;
TFVShowInfo = record
{ Stuff passed into viewer (in) }
cbSize:DWORD; { Size of structure for future expansion... }
hwndOwner : HWND; { who is the owner window. }
iShow:integer; { The show command }
{ Passed in and updated (in/Out) }
dwFlags:DWORD; { flags }
rect:TRECT; { Where to create the window may have defaults }
punkRel : TUNKNOWN; { Relese this interface when window is visible }
{ Stuff that might be returned from viewer (out) }
strNewFile:array[0..MAX PATH-1] of TOLECHAR; { New File to view. }
end;

{ Define File View Show Info Flags. }

const
FVSIF RECT =500000001 { The rect variable has valid data. };
FVSIF PINNED =500000002 { We should Initialize pinned };
FVSIF NEWFAILED =$08000000 { The new file passed back failed };
{ to be viewed. }
FVSIF NEWFILE =$80000000 { A new file to view has been returned };
FVSIF CANVIEWIT =$40000000 { The viewer can view it. };
type
IFileViewer = class (IUnknown)

function ShowInitialize (fsi:IFILEVIEWERSITE) :HResult; virtual; stdcall;
abstract;

function Show (pvsi:PEFVSHOWINFO) :HResult; virtual; stdcall; abstract;

function PrintTo (pszDriver:LPSTR; fSuppressUI:BOOL) :HResult; virtual;
stdcall; abstract;

end;

{ struct STRRET }
{ structure for returning strings from IShellFolder member functions }

const
STRRET WSTR =3$0000;
STRRET OFFSET =50001;
STRRET CSTR =50002;
type
PSTRRet = "TStrRet;
TSTRRET = record

uType:UINT; { One of the STRRET * values }



case integer of

0: (pOleStr:LPWSTR) ; { OLESTR that will be freed }

1: (uOffset:UINT) ; { Offset into SHITEMID (ANSI) }

2:(cStr: array[0..MAX PATH-1] of char); { Buffer to fill in }
end;

{ SHGetPathFromIDList }
{ This function assumes the size of the buffer (MAX PATH). The pidl }
{ should point to a file system object. }

function SHGetPathFromIDList (pidl:PITEMIDLIST; pszPath:LPSTR) :BOOL; stdcall;

{ SHGetSpecialFolderLocation }
{ Caller should call SHFree to free the returned pidl. }

{ registry entries for special paths are kept in : }
const
REGSTR PATH SPECIAL FOLDERS = REGSTRﬁPATHiEXPLORER+'\Shell Folders';
CSIDL_ DESKTOP =50000;
CSIDL PROGRAMS =$0002;
CSIDL CONTROLS =50003;
CSIDL PRINTERS =50004;
CSIDL_ PERSONAL =$0005;
CSIDL FAVORITES =$0006;
CSIDL STARTUP =50007;
CSIDL RECENT =50008;
CSIDL SENDTO =5$0009;
CSIDL BITBUCKET =$000a;
CSIDL STARTMENU =5000b;
CSIDL DESKTOPDIRECTORY =50010;
CSIDL DRIVES =5$0011;
CSIDL NETWORK =50012;
CSIDL_NETHOOD =$0013;
CSIDL_ FONTS =$0014;
CSIDL TEMPLATES =50015;

function SHGetSpecialFolderLocation (hwndOwner:HWND; nFolder:integer;
var ppidl:PITEMIDLIST) :HResult; stdcall;

type

BFFCALLBACK = function (Wnd:HWND;uMsg:UINT; l1Param, lpData:LPARAM) :integer
stdcall;

PBrowseInfo = "TBrowselInfo;

TBrowseInfo = record

hwndOwner : HWND;

pidlRoot:PITEMIDLIST;

pszDisplayName:LPSTR; { Return display name of item selected. }
lpszTitle:LPCSTR; { text to go in the banner over the tree. }
ulFlags:UINT; { Flags that control the return stuff }



lpfn:BFFCALLBACK;
lParam:LPARAM;
iImage:integer;
end;

{ extra

const

{ Browsing for directory. }
BIF_RETURNONLYFSDIRS =50001 {

searching };

BIF_DONTGOBELOWDOMAIN =50002 {
BIF STATUSTEXT =$0004;
BIF RETURNEFSANCESTORS =50008;
BIF BROWSEFORCOMPUTER =$1000 {
BIF BROWSEFORPRINTER =$2000 {
{ message from browser }

BFFM INITIALIZED = 1;

BFFM SELCHANGED = 2;

{ messages to browser }
BFFM SETSTATUSTEXT

BFFM_ENABLEOK =
BFFM_ SETSELECTION

function SHBrowseForFolder (1lpbi:PBROWSEINFO)

SHLoadInProc }

{ output var:

info that's passed back in callbacks }
where to return the Image index.

For finding a folder to start document

For starting the Find Computer };

}i

Browsing
Browsing

for Computers.
for Printers };

(WM_USER + 100) ;
(WM_USER + 101);
= (WM _USER + 102);

:PItemIDList; stdcall;

When this function is called, the shell calls CoCreatelInstance }

{
{
{ (or equivalent)
{

with CLSCTX INPROC SERVER and the specified CLSID }

from within the shell's process and release it immediately. }

function SHLoadInProc (rclsid:TCLSID)

{ IEnumIDList interface }
{ 1IShellFolder::EnumObjects member

type
IEnumIDList =
function Next (

class (IUnknown)
celt:ULONG;
var rgelt:
var pceltFetched:
abstract;

function Skip (celt:ULONG) :HResult;

function Reset:HResult; virtual;

function Clone (var ppenum:IEnumIDList) :HResult;

abstract;
end;

{ IShellFolder interface }
{ [Member functions] }
{ IShellFolder::BindToObject (pidl,

pbc,

:HRESULT; stdcall;

returns an IEnumIDList object. }

PITEMIDLIST;

ULONG) :HResult; wvirtual; stdcall;

virtual; stdcall; abstract;
stdcall; abstract;

virtual; stdcall;

riid, ppvOut) }

}



{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
}
{
{

{
{
{
{
{
{
{
{
{
{
{

C

This function returns an instance of a sub-folder which is specified }

by the IDList (pidl). }
IShellFolder: :BindToStorage (pidl,

This function returns a storage instance of a sub-folder which is }

specified by the IDList (pidl).
function in the first release of Win95.

IShellFolder: :ComparelDs (lParam,

explorer always passes 0 as lParam,

It should return O

folder. 'cidl' and

'apidl’

pbc,

riid, ppvObj) }

The shell never calls this member }

pidll,

}

pidl2) }
This function compares two IDLists and returns the result. The shell }

which indicates 'sort by name'. }

(as CODE of the scode), if two id indicates the }
same object; negative value if pidll should be placed before pidl2; }
positive value if pidl2 should be placed before pidll. }

IShellFolder: :CreateViewObject (hwndOwner,
This function creates a view object of the folder itself. The view }
object is a difference instance from the shell folder object. }

IShellFolder: :GetAttributesOf (cidl,
This function returns the attributes of specified objects in that }

riid, ppvOut) }

apidl, prgfInOut) }

specifies objects. 'apidl' contains only }

simple IDLists. The explorer initializes *prgfInOut with a set of }
flags to be evaluated. The shell folder may optimize the operation }
by not returning unspecified flags. }

IShellFolder: :GetUIObjectOf (hwndOwner,

cidl, apidl, riid, prgfInOut, ppvOut)

This function creates a UI object to be used for specified objects. }
The shell explorer passes either IID IDataObject (for transfer
operation) }

or IID IContextMenu

If the ID contains the display name
it returns the offset to the name.

to the display name

If it changes the ID as well,

(for context menu operation) as riid. }
IShellFolder: :GetDisplayNameOf }
This function returns the display name of the specified object. }

(in the locale character set), 1}

Otherwise, it returns a pointer }
which is allocated by the }

string (UNICODE),
task allocator, or fills in a buffer.
IShellFolder: :SetNameOf }
This function sets the display name of the specified object. }

alocated by the task allocator.

onst

}

}

it returns the new ID which is }

{ IShellFolder::GetDisplayNameOf/SetNameOf uFlags }

SHGDN_ NORMAL = 0;
SHGDN_INFOLDER 1;

SHGDN_FORPARSING = $8000;

{ default

(display purpose) }

{ displayed under a folder (relative) }

{ IShellFolder: :EnumObjects }

SHCONTF_FOLDERS
SHCONTF NONFOLDERS
SHCONTF INCLUDEHIDDEN

= 32;
= 064;
= 128;

{ for ParseDisplayName or path }

{ for shell browser }
{ for default view }
{ for hidden/system objects }

{ IShellFolder::GetAttributesOf flags }

SFGAO_CANCOPY
SFGAO CANMOVE
SFGAO CANLINK
SFGAO_CANRENAME
SFGAO CANDELETE
SFGAO HASPROPSHEET

= DROPEFFECT COPY
= DROPEFFECT MOVE

= DROPEFFECT LINK

=500000010
=3$00000020
=$00000040

{
{
{

{ Objects can be copied };
{ Objects can be moved };
{ Objects can be linked };
Objects can be renamed };
Objects can be deleted };
Objects have property sheets };



SFGAO_DROPTARGET =3$00000100 { Objects are drop target };

SFGAO CAPABILITYMASK =$00000177;

SFGAO_LINK =$00010000 { Shortcut (link) };:

SFGAO_SHARE =500020000 { shared };

SFGAO_READONLY =500040000 { read-only };

SFGAO_GHOSTED =500080000 { ghosted icon };

SFGAO_ DISPLAYATTRMASK =S000F0000;

SFGAO FILESYSANCESTOR =$10000000 { It contains file system folder };

SFGAO_FOLDER =520000000 { It's a folder. };

SFGAO_FILESYSTEM =$40000000 { is a file system thing
(file/folder/root) };

SFGAO_HASSUBFOLDER =$80000000 { Expandable in the map pane };

SFGAO CONTENTSMASK =$80000000;

SFGAO_VALIDATE =3501000000 { invalidate cached information };

SFGAO REMOVABLE =$02000000 { is this removeable media? };
type

IShellFolder = class (IUnknown)
function ParseDisplayName (hwndOwner :HWND;
pbcReserved: {LPBC}pointer; lpszDisplayName:POLESTR;
var pchEaten:ULONG; var ppidl:PITEMIDLIST;
var dwAttributes:ULONG) :HResult; virtual; stdcall; abstract;
function EnumObjects (hwndOwner:HWND; grfFlags:DWORD;
var EnumIDList: IENUMIDLIST) :HResult; virtual;

stdcall; abstract;

function BindToObject (pidl:PITEMIDLIST; pbcReserved:{LPBC}pointer;
riid:TIID; var ppvOut:pointer) :HResult; virtual;

stdcall; abstract;

function BindToStorage (pidl:PITEMIDLIST; pbcReserved:{LPBC}pointer;
riid:TIID; var ppvObj:pointer) :HResult; virtual;

stdcall; abstract;

function ComparelIDs (lParam:LPARAM;
pidll,pidl2: PITEMIDLIST) :HResult; virtual; stdcall;

abstract;

function CreateViewObject (hwndOwner:HWND; riid:TIID;
var ppvOut: pointer) :HResult; virtual; stdcall;

abstract;

function GetAttributesOf (cidl:UINT; wvar apidl: PITEMIDLIST;
var rgfInOut:UINT) :HResult; virtual; stdcall;

abstract;

function GetUIObjectOf (hwndOwner:HWND; cidl:UINT; var apidl: PITEMIDLIST;
riid:TIID; var prgfInOut:UINT; var

ppvOut:pointer) :HResult; virtual; stdcall; abstract;

function GetDisplayNameOf (pidl: PITEMIDLIST; uFlags:DWORD;
lpName: PSTRRET) :HResult; virtual; stdcall;

abstract;

function SetNameOf (hwndOwner:HWND; pidl: PITEMIDLIST;
lpszName: POLEStr; uFlags: DWORD;
var ppidlOut: PITEMIDLIST) :HResult; wvirtual; stdcall;

abstract;

{

end;

Helper function which returns a IShellFolder interface to the desktop }
folder. This is equivalent to call CoCreateInstance with CLSID ShellDesktop.

CoCreatelInstance (CLSID Desktop, NULL, }



function SHGetDesktopFolder (var ppshf:

CLSCTX INPROC, IID IShellFolder, é&pshf); }

ISHELLFOLDER) :HResult; stdcall;

{ Clipboard format which may be supported by IDataObject from system }

{ defined shell folders (such as directories, network, ...). }
[mmmmmm e )
const
CFSTR_SHELLIDLIST ='Shell IDList Array' { CF_IDLIST }s
CFSTR _SHELLIDLISTOFFSET ='Shell Object Offsets' { CF _OBJECTPOSITIONS }:
CFSTR_NETRESOURCES ='Net Resource' { CF_NETRESOURCE };
CFSTR FILEDESCRIPTOR ='FileGroupDescriptor' { CF_FILEGROUPDESCRIPTOR }s
CFSTR FILECONTENTS ='FileContents' { CF_FILECONTENTS }s
CFSTR FILENAME ='FileName' { CF_FILENAME }s
CFSTR PRINTERGROUP ='PrinterFriendlyName' { CF_PRINTERS }s
CFSTR FILENAMEMAP ='FileNameMap' { CF_FILENAMEMAP }s
{ CF_OBJECTPOSITIONS }
DVASPECT SHORTNAME = 2 { use for CF HDROP to get short name version };

{ format of CF NETRESOURCE }

type
PNRESARRAY

~"TNRESARRAY;

TNRESARRAY = record { anr }

cItems:UINT;

nr: array[O0..

end;

0] of TNETRESOURCE;

{ format of CF IDLIST }

PIDA = ~TIDA;
TIDA = record
cidl:UINT;

{ number of relative IDList }

aoffset: array[0..0] of UINT;

IDList }
end;

[07]:

folder IDList, [1]-[cidl]: item

{ FILEDESCRIPTOR.dwFlags field indicate which fields are to be used }

const

FD CLSID

FD SIZEPOINT
FD ATTRIBUTES
FD_CREATETIME
FD ACCESSTIME
FD WRITESTIME
FD FILESIZE
FD LINKUI

type

PFILEDESCRIPTOR
TFILEDESCRIPTOR

= $0001;
= $50002;
= $0004;
$0008;
$0010;
= $0020;
= $0040;
= $8000;

= "TFILEDESCRIPTOR;
record { fod }

dwFlags:DWORD;

clsid:TCLSID;

{

'link'

UI is prefered }



sizel :TSIZE;

pointl:TPOINT;

dwFileAttributes:DWORD;
ftCreationTime:TFILETIME;
ftLastAccessTime:TFILETIME;
ftLastWriteTime:TFILETIME;
nFileSizeHigh:DWORD;

nFileSizeLow:DWORD;

cFileName: array[0..MAX PATH-1] of CHAR;
end;

{ format of CF_FILEGROUPDESCRIPTOR }
PFILEGROUPDESCRIPTOR "TFILEGROUPDESCRIPTOR;
TFILEGROUPDESCRIPTOR = record { fgd }

cItems:UINT;
fgd: array[0..0] of TFILEDESCRIPTOR;
end;

{ format of CF HDROP and CF PRINTERS, in the HDROP case the data that
follows }
{ is a double null terinated list of file names, for printers they are printer
}
{ friendly names }
PDROPFILES = “~TDROPFILES;
TDROPFILES = record

pFiles:DWORD; offset of file list }

{
pt:TPOINT; { drop point (client coords) }
fNC:BOOL; { is it on NonClient area }

{ and pt is in screen coords }
fWide :BOOL; { WIDE character switch }
end;

{====== File System Notification APIs =============================== }

const

{ File System Notification flags }

SHCNE_RENAMEITEM =500000001;
SHCNE_CREATE =$00000002;
SHCNE_DELETE =500000004;
SHCNE_MKDIR =$00000008;
SHCNE RMDIR =$00000010;
SHCNE_MEDIAINSERTED =500000020;
SHCNE_MEDIAREMOVED =500000040;
SHCNE_DRIVEREMOVED =500000080;
SHCNE DRIVEADD =$00000100;
SHCNE_NETSHARE =500000200;
SHCNE NETUNSHARE =$00000400;
SHCNE ATTRIBUTES =$00000800;
SHCNE_UPDATEDIR =$00001000;
SHCNE_UPDATEITEM =500002000;
SHCNE_SERVERDISCONNECT =500004000;
SHCNE_UPDATEIMAGE =500008000;
SHCNE_DRIVEADDGUI =500010000;
SHCNE_RENAMEFOLDER =500020000;

SHCNE FREESPACE =300040000;



SHCNE ASSOCCHANGED =$08000000;

SHCNE DISKEVENTS =$0002381F;
SHCNE GLOBALEVENTS =$0C0581E0 { Events that dont match pidls
first };
SHCNE ALLEVENTS =STFFFFFFF;
SHCNE INTERRUPT =$80000000 { The presence of this flag
indicates };
{ that the event was generated by an
{ interrupt. It is stripped out
before }
{ the clients of SHCNNotify see it.
{ Flags }

{ uFlags & SHCNF TYPE is an ID which indicates what dwIteml and dwItem2
mean }

SHCNF IDLIST =350000 { LPITEMIDLIST };

SHCNF_ PATH =50001 { path name };

SHCNF PRINTER =50002 { printer friendly name };
SHCNF_ DWORD =50003 { DWORD 1};

SHCNF TYPE =S00FF;

SHCNF_ FLUSH =$1000;

SHCNF FLUSHNOWAIT =$2000;
{ APIs }

procedure SHChangeNotify (wEventId:longint; uFlags:UINT;
dwIteml,dwItem2:pointer); stdcall;

procedure SHAddToRecentDocs (uFlags:UINT; pv:pointer); stdcall;

function SHGetInstanceExplorer (var Unk:IUnknown) :HResult; stdcall;

{ SHAddToRecentDocs }
const
SHARD PIDL =500000001;
SHARD PATH =$00000002;
implementation
const Shell32DLL = 'shell32.dl1l';

function SHGetMalloc (var ppMalloc: IMALLOC) :HResult;
begin

Result := CoGetMalloc (MEMCTX TASK,ppMalloc):;
end;

function SHGetPathFromIDList; external Shell32DLL name 'SHGetPathFromIDList';
function SHGetSpecialFolderLocation; external Shell32DLL name
'SHGetSpecialFolderLocation';

function SHBrowseForFolder; external Shell32DLL name 'SHBrowseForFolder';
function SHLoadInProc; external Shell32DLL name 'SHLoadInProc';

function SHGetDesktopFolder; external Shell32DLL name 'SHGetDesktopFolder';
procedure SHChangeNotify; external Shell32DLL name 'SHChangeNotify';
procedure SHAddToRecentDocs; external Shell32DLL name 'SHAddToRecentDocs';
function SHGetInstanceExplorer; external Shell32DLL name

}

}



'SHGetInstanceExplorer';

end.



Q: How do | put a repeating bitmap on the background of an MDI main form.

A: The basic technique involved subclassing the MDI client window (ClientHandle
property) and responding to WM_ERASEBKGND by tiling the bitmap on the client
window. However, there were a couple of problems; scrolling the main window to bring
an off-screen child into view would screw up the background, and the background didn't
get painted correctly behind the child window icons.

Well, HOORAY! | think I've whupped both those problems. Here's the code, for those
who are interested. I'll start with the child form's code, followed by the main form's (units
are named MDIWAL2U.PAS and MDIWAL1U.PAS). The main form is assumed to have
the desired bitmap in a TImage named Image1.

private
{ Private declarations }
procedure WMIconEraseBkgnd (VAR Message: TWMIconEraseBkgnd);
message WM TCONERASEBKGND;

USES Mdiwallu;
procedure TForm2.WMIconEraseBkgnd (VAR Message: TWMIconEraseBkgnd);
BEGIN
TForml (Application.Mainform) .PaintUnderIcon(Self, Message.DC);
Message.Result := 0;
END;

{ Private declarations }

bmW, bmH : Integer;

FClientInstance,

FPrevClientProc : TFarProc;

PROCEDURE ClientWndProc (VAR Message: TMessage) ;
public

PROCEDURE PaintUnderIcon (F: TForm; D: hDC);

PROCEDURE TForml.PaintUnderIcon (F: TForm; D: hDC);

VAR
DestR, WndR : TRect;
Ro, Co,
x0fs, yOfs,
XNum, yNum : Integer;
BEGIN

{calculate number of tilings to fill D}
GetClipBox (D, DestR);
WITH DestR DO

BEGIN
xNum := Succ ((Right-Left) DIV bmW) ;
yNum := Succ((Bottom-Top) DIV bmW) ;
END;

{calculate offset of image in D}
GetWindowRect (F.Handle, WndR) ;
WITH ScreenToClient (WndR.TopLeft) DO
BEGIN
x0Ofs := X MOD bmW;



yOfs := Y MOD bmH;
END;
FOR Ro := 0 TO xNum DO
FOR Co := 0 TO yNum DO

BitBlt (D, Co*bmW-xOfs, Ro*bmH-Yofs, bmW, bmH,
Imagel.Picture.Bitmap.Canvas.Handle,
0, 0, SRCCOPY) ;
END;

PROCEDURE TForml.ClientWndProc (VAR Message: TMessage) ;
VAR Ro, Co : Word;
begin
with Message do
case Msg of
WM ERASEBKGND:
begin
FOR Ro := 0 TO ClientHeight DIV bmH DO
FOR Co := 0 TO ClientWIDTH DIV bmW DO
BitBlt (TWMEraseBkGnd (Message) .DC,
Co*bmW, Ro*bmH, bmW, bmH,
Imagel.Picture.Bitmap.Canvas.Handle,
0, 0, SRCCOPY);
Result := 1;
end;
WM VSCROLL,
WM HSCROLL
begin
Result := CallWindowProc (FPrevClientProc,
ClientHandle, Msg, wParam, lParam);
InvalidateRect (ClientHandle, NIL, True);

end;
else
Result := CallWindowProc (FPrevClientProc,
ClientHandle, Msg, wParam, lParam);

end;
end;

procedure TForml.FormCreate (Sender: TObject);
begin
bmW := Imagel.Picture.Width;
bmH := Imagel.Picture.Height;
FClientInstance := MakeObjectInstance (ClientWndProc) ;
FPrevClientProc := Pointer (
GetWindowLong (ClientHandle, GWL WNDPROC)) ;
SetWindowLong (ClientHandle, GWL_ WNDPROC,
LongInt (FClientInstance));
end;



Q: How do | do bit-wise manipulation?

A:

{******************************************

TheBit parameter is counted from 0..31
******************************************}

unit Bitwise;

interface
function IsBitSet (const val: longint; const TheBit: byte): boolean;
function BitOn (const val: longint; const TheBit: byte): LongInt;
function BitOff (const val: longint; const TheBit: byte): Longlnt;
function BitToggle (const val: longint; const TheBit: byte): LongInt;

implementation

function IsBitSet (const val: longint; const TheBit: byte): boolean;
begin

result := (val and (1 shl TheBit)) <> 0;
end;

function BitOn(const val: longint; const TheBit: byte): Longlnt;
begin

result := val or (1 shl TheBit);
end;

function BitOff (const val: longint; const TheBit: byte): Longlnt;
begin

result := val and not (1 shl TheBit):;
end;

function BitToggle (const val: longint; const TheBit: byte): LongInt;
begin

result := val xor (1 shl TheBit);
end;

end.



Turn off compile optimizations. Use w8loss.exe on the EXE file instead.



with memol.lines do
begin
add('"');
delete (count - 1);
end;

memol.perform(em LineScroll, 0, memol.lines.count - 1);



Outline topic

How do | do outline drag and drop?
How do | move an entire node (with siblings) in an outline?

Here is how to fill an outline component from a table.
How do | move an outline item to a different level?
How can | use a different bitmap with each node of a TOutline?

Using the methods
AddChildObject
GetDataltem




How to use AddChildObject and GetDataltem

unit U outl;
interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, Grids, Outline, Spin;

type
TForml = class (TForm)
Outlinel: TOutline;
SpinEditl: TSpinEdit;
procedure FormCreate (Sender: TObject);
procedure SpinEditlChange (Sender: TObject);

private
{ Private declarations }
public
{ Public declarations }
end;
var

Forml: TForml;

implementation
const
NumberOfItems = 4;
var
1l: array[l..NumberOfItems] of integer;

{$SR *.DFM}

procedure TForml.FormCreate (Sender: TObject);
var i, indx: integer;

begin
with outlinel do
begin
indx := add (0, 'level 1'");
for 1 := 1 to NumberOfItems do
begin
1[1i] := 1i;
AddChildObject (indx, 'level 2 item ' + IntToStr (i), Q@1[i]);
end;
end;
SpinEditl.MaxValue := NumberOfItems;
SpinEditlChange (Sender) ;
end;

procedure TForml.SpinEditlChange (Sender: TObject);

begin
with outlinel do
Caption := Items|[GetDataltem(@l[SpinEditl.value])].Text;

end;



end.



Q: How can | use huge arrays? (i.e. > 64K)

A:  Unit provides support for arrays and huge (>64K) arrays of data. Each item size
stored in the array must be a multiple of 2 (2,4,8,16,32..) in order to work using the huge
arrays and matrices. This is needed so that you don't straddle the segment boundaries.

To use these objects merely create the object using the appropriate constructor. The
object will be created with it's data initialized to zeros (GMEM_ZEROINIT). to access an
element of the object use the AT() method. This will return you a pointer to the element
you specified. for huge objects it will do the segment math correctly. Then you can
dereference the pointer and work with the data.

This unit merely simplifies the use of huge type arrays and matrices. It does not do
much more.

Unit Arrays;
{Author ROBERT WARREN CIS ID 70303,537}
interface

uses WObjects,WinTypes,WinProcs;

type

PArray = "TArray;
TArray = object (TObject)
Handle: THandle;
ItemSize: Word;
Limit: LongInt;
Address: Pointer;
constructor Init(altemSize: Word; alLimit: LongInt);
destructor done; virtual;

function At (index: LongInt): Pointer; virtual;
end;
PMatrix = "TMatrix;

TMatrix = object (TObject)
Handle: THandle;
ItemSize: Word;
Rows,Cols: LongInt;
Address: Pointer;
constructor Init (altemSize: Word; aRows,aCols: LongInt);
destructor done; virtual;
function At (aRow,aCol: LongInt): Pointer; virtual;
end;

PHugeMatrix = ~THugeMatrix;

THugeMatrix = object (TMatrix)
SegIncr : Word;
constructor Init(altemSize: Word; aRows,aCols: LongInt);
function At (aRow,aCol: LongInt): Pointer; virtual;

end;



PHugeArray = "“THugeArray;
THugeArray = object (TArray)
SegIncr: Word;
constructor Init(altemSize: Word; alLimit: LongInt);

function At (index: LongInt): Pointer; virtual;
end;
function NewArray(altemSize: Word; alLimit: LongInt): PArray;
function NewMatrix(altemSize: Word; aRows,aCols: LongInt): PMatrix;
implementation

{

returns a pointer to an Array if small enough otherwise a HugeArray

}

function NewArray(altemSize: Word; alimit: LongInt): PArray;
var

TempArrayPtr: PArray;
begin

TempArrayPtr:=New (PArray, Init (altemSize,alimit));
if TempArrayPtr = nil then
TempArrayPtr:=New (PHugeArray, Init (altemSize,alimit));
NewArray:=TempArrayPtr;
end;

{

returns a pointer to an Matrix if small enough otherwise a HugeMatrix

}

function NewMatrix (altemSize: Word; aRows,aCols: LongInt): PMatrix;
var

TempMatrixPtr: PMatrix;
begin

TempMatrixPtr:=New (PMatrix,Init (altemSize,aRows,aCols));
if TempMatrixPtr = nil then
TempMatrixPtr:=New (PHugeMatrix, Init (altemSize, aRows,aCols));
NewMatrix:=TempMatrixPtr;
end;

procedure AHIncr; far; external 'KERNEL' index 114;

constructor TMatrix.Init (altemSize: Word; aRows,aCols: LongInt);
var
InitSize: LongInt;
begin
TObject.Init;
Rows:=aRows;
Cols:=aCols;
ItemSize:=altemSize;
InitSize:=LongInt (ItemSize * Rows * Cols);
if InitSize > S$FFFF then fail;
Handle:=GlobalAlloc (GMEM MOVEABLE or GMEM ZEROINIT, ItemSize * Rows * Cols);
if handle = 0 then fail;



Address:=GlobalLock (Handle) ;
end;

destructor TMatrix.done;
begin
GlobalUnlock (Handle) ;
GlobalFree (Handle) ;

end;

function TMatrix.At (aRow,aCol: LonglInt): Pointer;

var

pos: Word;

begin

pos:=(aRow * Cols * ItemSize) + (ACol * ItemSize);
At:=Pointer (MakeLong (pos, HiWord (LongInt (Address))));
end;

constructor THugeMatrix.Init (altemSize: Word; aRows,aCols: LonglInt);
begin

TObject.Init;

Rows:=aRows;

Cols:=aCols;

ItemSize:=altemSize;

Handle:=GlobalAlloc (GMEM MOVEABLE or GMEM_ZEROINIT,LongInt(ItemSize * Rows *
Cols));

if handle = 0 then fail;

Address:=GlobalLock (Handle) ;

SegIncr:=0fs (AHIncr);
end;

function THugeMatrix.At (aRow,aCol: LongInt): Pointer;
var
Segs,O0ffs: Word;
Pos: LongInt;
begin
pos:=(aRow * Cols * ItemSize) + (ACol * ItemSize);
Segs:=Pos div S$FFFF;
Offs:=Pos mod S$SFFFF;
At:=Pointer (MakeLong (Offs, ((Segs*Seglncr)+ (HiWord (LongInt (Address)))))):;
end;

constructor TArray.Init(altemSize: Word; alLimit: LonglInt);
var

InitSize: LonglInt;
begin

TObject.Init;

ItemSize:=altemSize;



Limit:=alimit;
InitSize:=ItemSize * Limit;
if InitSize > S$FFFF then fail;
Handle:=GlobalAlloc (GMEM MOVEABLE or GMEM ZEROINIT, InitSize);
if handle = 0 then fail;
Address:=GlobalLock (Handle) ;

end;

destructor TArray.Done;
begin
TObject.Done;
GlobalUnlock (Handle) ;
GlobalFree (Handle) ;
end;

function TArray.At (index: LongInt): Pointer;
begin

At:=Pointer (LongInt (ItemSize * index) + LonglInt (Address));
end;

constructor THugeArray.Init (altemSize: Word; alLimit: LonglInt);
begin
TObject.Init;
ItemSize:=altemSize;
Limit:=alLimit;
Handle:=GlobalAlloc (GMEM MOVEABLE or GMEM ZEROINIT,ItemSize * Limit);
if handle = 0 then fail;
Address:=GlobalLock (Handle) ;
SegIncr:=0fs (AHIncr);
end;

function THugeArray.At (index: LongInt): Pointer;
var
Segs,O0ffs: Word;
Pos: LongInt;
begin
Pos:=Index * ItemSize;
Segs:=Pos div S$FFFF;
Offs:=Pos mod S$SFFFF;
At:=Pointer (MakeLong (Offs, ((Segs*Seglncr)+ (HiWord (LongInt (Address)))))):;
end;

begin
end.



{ Here is a slider custom component. }

unit Slider;
interface
uses

SysUtils, WinTypes,
Forms, Dialogs;

WinProcs, Messages, Classes, Graphics, Controls,

type

TSliderOrientation
TSlider
private
Thumb
MemDC

Bitmap

slVertical) ;

(slHoriz,
class (TCustomControl)

TRect;
HDC;
HBitmap;

boolean;
TPoint;
Integer;

capture
capturePoint
captureValue

fTrackWidth
fTrackColor
fOrientation
fThumbHeight Integer;
fThumbColor TColor;
fMin Integer;
fMax Integer;
fvalue Integer;
fValueChange TNotifyEvent;
fCt13D boolean;
procedure SetTrackWidth
procedure SetTrackColor
procedure SetOrientation
procedure SetThumbHeight
procedure SetThumbColor
procedure SetMin (v
procedure SetMax (v
procedure SetValue
procedure SetCtl3D
protected
procedure Paint;
procedure MouseDown
Integer); override;
procedure MouseUp
Integer); override;
procedure MouseMove
procedure DrawThumb;
public
constructor Create
destructor Destroy;
published

Integer;
TColor;
TSliderOrientation;

Integer);

TColor) ;
TSliderOrientation);
Integer);

TColor) ;

(value
(value
(value
(value
(value

Integer);

Integer);
(value Integer);
(value boolean) ;

override;

(Button: TMouseButton; Shift: TShiftState; X, Y:

(Button: TMouseButton; Shift: TShiftState; X, Y:

(Shift: TShiftState;
virtual;

X, Y: Integer); override;

(AOwner TComponent); override;

override;

property TrackWidth
property TrackColor
property ThumbHeight

Integer read fTrackWidth write SetTrackWidth;
TColor read fTrackColor write SetTrackColor;

Integer read fThumbHeight write SetThumbHeight;



property ThumbColor
property Orientation

SetOrientation;

property
property
property
property
property

fValueChange;

property
property
property
property
property
property
property
property

property
property
property
property
property
property
property
property
property

end;

Minimum
Maximum
Value
Ctl3D

OnValueChange

Color;

Enabled;

write
write

Integer read fMin
Integer read fMax
Integer read fValue write
boolean read fCtl3D write
TNotifyEvent read

HelpContext;

Hint;

ParentShowHint;
ShowHint;

Tag;

Visible;

OnClick;

OnDragDrop;
OnDragOver;
OnEndDrag;

OnEnter;

OnExit;

OnMouseDown;
OnMouseMove;
OnMouseUp;

procedure Register;

implementation

constructor TSlider.Create

begin

inherited Create
50;
200;

Width :=
Height :=

fTrackWidth
fOrientation :=
fTrackColor
fThumbColor

fMin
fMax
fvalue :=

0;

fCtl3D :=

capture :=

thumb.left
end;

= 10;

(AOwner

(AOwner) ;

slVertical;
clBtnFace;

:= clBtnFace;

100;
0;
fThumbHeight :
fvalueChange :=
True;

False;
= -1;

= 20;
Nil;

destructor TSlider.Destroy;

begin

if Bitmap <> 0 then DeleteObject

(Bitmap) ;

TColor read fThumbColor write SetThumbColor;
TSliderOrientation read fOrientation write

SetMin;

SetMax;

SetValue;
SetCtl3D;
fvalueChange write

TComponent) ;



if MemDC <> 0 then DeleteDC (MemDC) ;
inherited Destroy
end;

procedure TSlider.SetTrackWidth (value

begin
if fTrackWidth <> value then
begin
fTrackWidth := value;
Invalidate
end
end;

procedure TSlider.SetOrientation (value

begin
if value <> fOrientation then
begin
fOrientation := value;
Invalidate
end
end;

procedure TSlider.SetTrackColor (value

begin
if value <> fTrackColor then
begin
fTrackColor := value;
Invalidate
end
end;

procedure TSlider.SetThumbHeight (value

begin
if value <> fThumbHeight then
begin
fThumbHeight := value;
Invalidate
end
end;

procedure TSlider.SetThumbColor (value
begin
if value <> fThumbColor then
begin
fThumbColor := value;
Invalidate
end
end;

procedure TSlider.SetMin (v : Integer);
begin
if v <> fMin then
begin
fMin := V;
if Value < fMin then Value := fMin;
Invalidate
end

Integer);

TSliderOrientation);

TColor) ;

Integer);

TColor) ;



end;

procedure TSlider.SetMax (v : Integer);
begin
if v <> fMax then
begin
fMax := V;
if Value > fMax then Value := fMax;
Invalidate
end
end;
procedure TSlider.SetValue (value : Integer);
begin
if value < Minimum then value := Minimum
else if value > Maximum then value := Maximum;

if value <> fValue then

begin
fValue := Value;
if Assigned (fValueChange) then OnValueChange (self);
DrawThumb
end
end;

procedure TSlider.SetCtl3D (value : boolean);
begin
if value <> fCtl3D then
begin
fCtl3D := value;
Invalidate
end
end;

procedure TSlider.Paint;

var Rect : TRect;
begin
with Canvas do
begin
if MemDC = 0 then MemDC := CreateCompatibleDC (Canvas.Handle);
if fOrientation = slVertical then
begin
if Bitmap = 0 then
Bitmap := CreateCompatibleBitmap (Canvas.Handle, Width,
ThumbHeight) ;
Rect.top := 0;
Rect.bottom := Height;
Rect.left := (Width - TrackWidth) div 2;
Rect.Right := Rect.Left + TrackWidth
end
else
begin
if Bitmap = 0 then
Bitmap := CreateCompatibleBitmap (Canvas.Handle, ThumbHeight,

Height) ;



Rect.top := (Height - TrackWidth) div 2;

Rect.bottom := Rect.Top + TrackWidth;
Rect.left := 0;
Rect.Right := Width
end;
Brush.Color := TrackColor;
if Ctl3D then
begin
Pen.Color := clBtnHighlight;
with Rect do
begin
Rectangle (left, top, right, bottom);
Pen.Color := clBtnShadow;
MoveTo (left, top):;
LineTo (right, top):

(
MoveTo (left, top):
(

LineTo (left, bottom)
end
end
else FillRect (Rect);
DrawThumb;
end

end;

procedure TSlider.DrawThumb;
var
basePos : Integer;
rc : bool;
0oldBmp : HBitmap;
oldThumb : TRect;
begin
if cslLoading in ComponentState then Exit;
0ldBmp := SelectObject (MemDC, Bitmap):;

if Enabled then Canvas.Brush.Color := ThumbColor
else Canvas.Brush.Color := clGray;

if Ctl3D then Canvas.Pen.Color := clBtnHighlight
else Canvas.Pen.Color := clBlack;

oldThumb := Thumb;

if Orientation = slVertical then
begin
basePos := (Height - ThumbHeight) * (Value - Minimum)
div (Maximum - Minimum) ;
Thumb.left := 0;
Thumb.right := Width;
Thumb.Bottom := Height - BasePos;
Thumb.top := Thumb.Bottom - ThumbHeight;
if oldThumb.left <> -1 then with oldThumb do
BitBlt (Canvas.Handle, Left, Top, Width, ThumbHeight, MemDC, 0, O,
SRCCOPY) ;

with Thumb do
rc := BitBlt (MemDC, 0, 0, Width, ThumbHeight, Canvas.Handle, Left, Top,
SRCCOPY) ;



end

else
begin
basePos := (Width - ThumbHeight) * (Value - Minimum) div (Maximum -
Minimum) ;
Thumb.left := basePos;
Thumb.Right := Thumb.left + ThumbHeight;
Thumb.Top := 0;
Thumb.Bottom := Height;

if oldThumb.left <> -1 then with oldThumb do
BitBlt (Canvas.Handle, Left, Top, ThumbHeight, Height, MemDC, 0, O,
SRCCOPY) ;

with Thumb do
rc := BitBlt (MemDC, 0, 0, ThumbHeight, Height, Canvas.Handle, Left,
Top, SRCCOPY) ;
end;

with Canvas do

begin
with Thumb do if Ctl3D then
begin
Rectangle (left, top, right-1, bottom-1);
Pen.Color := clBtnShadow;

MoveTo (Left + 1, Bottom - 3);
LineTo (Left + 1, Top+l);
LineTo (Right - 2, Top+l);
MoveTo (Left, Bottom - 1);
(
(

LineTo (Right-1, Bottom - 1);
LineTo (Right-1, Top - 1)
end
else
Rectangle (left, top, right, bottom);

end;

SelectObject (MemDC, OldBmp) ;
end;

procedure TSlider.MouseDown (Button: TMouseButton; Shift: TShiftState; X, Y:

Integer);
begin
inherited MouseDown (Button, Shift, X, Y);
if (Button = mbLeft) and PtInRect (Thumb, Point (X, Y)) then

begin
capture := True;
capturePoint := Point (X, Y);
captureValue := value;
end;
end;

procedure TSlider.MouseUp (Button: TMouseButton; Shift: TShiftState; X, Y:

Integer);

begin
inherited MouseUp (Button, Shift, X, Y);
if (Button = mbLeft) then capture := False

end;



procedure TSlider.MouseMove (Shift: TShiftState; X, Y: Integer);
begin
inherited MouseMove (shift, X, Y);
if capture then
if Orientation = slVertical then
value := captureValue + Minimum + (Maximum - Minimum) * (capturePoint.Y
- Y) div (Height - ThumbHeight)
else
value := captureValue + Minimum + (Maximum - Minimum) * (X -
capturePoint.X) div (Width - ThumbHeight) ;
end;

procedure Register;
begin

RegisterComponents ('Samples', [TSlider]);
end;

end.

TSlider Component Notes

By Colin Wilson - woozle@cix.compulink.co.uk

The TSlider object is a representation of a Slider - as used in mixers, lighting
control units, etc.

It defines the following new public properties:
property TrackWidth : Integer
The width of the slider track.
property TrackColor : TColor
The slider track color.
property ThumbHeight : Integer

The height of the Thumb (the bit that slides). The thumb is always as
wide as the component - so can be controlled by the Width property.

property ThumbColor : TColor
The thumb colour.
property Orientation : TSliderOrientation

slHorizontal or slVertical. Controls whether the slider slider left/right
or up/down.



property Minimum : Integer
The minimum slider value.
property Maximum : Integer
The maximum slider value.
property Value : Integer
The current slider value.
The following new protected procedure is defined:
procedure DrawThumb; virtual,
Can be overriden to draw custom thumbs or thumbs with legends, bitmaps, etc.
The following new event is defined:
property OnValueChange : TNotifyEvent;

Called whenever the value changes



JPEG support is not genericly included in Delphi. Contact Jan Dekkers
CIS[72130,353] for an affordable (49%) JPEG/PCX component! You can download a
shareware-version from the Delphi forum, too.



Q: How do | manipulate (enable/disable) the 'close' item on the default system menu
(i.e. the menu which drops down from the system box when the user clicks it or presses
the ALT-SPACEBAR key combination?

A:

procedure TMainForm.WMInitMenuPopup(var Msg : TWMInitMenuPopup);
begin
if (Msg.SystemMenu ) then
EnableMenultem(Msg.MenuPopup, SC_Close, MF_ByCommand or MF_Grayed);
end;



TEdit

How can | make the active TEdit one color, and every other TEdit a default color?

How do | handle TEdit text with windows messages only?

Here is a custom TEdit that will tab to the next control when the user hits the <ENTER>.
How do | format the text of a TEdit so that a 1 becomes 001, and 10 becomes 010, etc?
How do | do a ShowMessage on the OnExit() of a TEdit and still get a cursor on the
next component?

How do | justify the text in a TEdit?




Q: How do | get everything on the command line? In other words | would like a piece
of code that would do the following....

Given the DOS execute line of
utils.exe c:\oscar d:\colpas "oscar colpas"

| would like to get the three parameters into variables in my pascal program to have
these string values....

a ="c:\oscar"
b = "d:\colpas"
c = "oscar colpas"

Using ParamStr would ignore the spaces in between oscar and colpas.
A:
A: Delphis System Unit has a variable called CmdLine which points to the full

command line (zero-terminated). You can copy it into a Pascal String with
StrPas( CmdLine );



Q: How do | call a"C" DLL from Delphi?

A: If you have a DLL written in C++ like this:

#define STRICT
#include <windows.h>
#define DEFINE_EXPORT
#define EXP export

//******Your Code goes here*****************************************
int EXP MyFunc (int 1)
{

return (i+10);

}

//*****************************************************************

fpragma argsused

int FAR PASCAL LibMain ( HINSTANCE hInstance,
WORD wDataSegment,
WORD wHeapSize,
LPSTR lpszCmdLine )

if ( wHeapSize != 0 )
UnlockData( 0 );
return 1; // Indicate that the DLL was initialized successfully.

}

#pragma argsused
int FAR PASCAL WEP ( int bSystemExit )
{

return 1;

}

This won't work. There are two ways to fix it.  One is to declare the function in
question as EXTERN. e.g.

extern "C" {
int EXP MyFunc (int 1)
{

return (i+10);
}
}

In this case you need to use cdelc when you prototype the function. Something like
this:

function MyFunc (i: integer): integer; cdecl; far; external 'MYDLL' index 12;
OR

you can declare the functions with FAR PASCAL and then call the function in the normal



way

If there are problems, make sure that you declare the DLL functions with "_loadds".

Remember that, normally, a DLL function runs on the caller's DS, unless you specifically
load the correct one.



Q: How do | make a component that uses the built in editor for a TStrings property?

A: The biggest trick is that when you create the memory for the TStrings property, it
must be created as a TStringList even though it must be a TStrings in the class itself.
Here is an example of what | mean:

unit TestEdit;
interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls;

type
TTestEditorClass = class (TListBox)
private
{ Private declarations }
FStringListValues: TStrings;

protected
{ Protected declarations }
public
{ Public declarations }
constructor create (AOwner: TComponent); overRide;
procedure SetStringListValues (Value: TStrings);
published

{ Published declarations }
property StringListValues: tstrings read FStringlListValues write
SetStringListValues;
end;

procedure Register;
implementation
procedure Register;
begin
RegisterComponents ('Samples', [TTestEditorClass]);

end;

constructor TTestEditorClass.create (AOwner: TComponent) ;

begin
inherited create (AOwner) ;
FStringListValues := TStringList.create;
end;

procedure TTestEditorClass.SetStringListValues (Value: TStrings);
begin

StringListValues.Assign (Value);
end;

end.



tablel.FieldDefs.items [SomeValue] .name;

Note: If you get a "List Index out of bounds" error, it is probably because the TTable
object is not active.



IF OPERATING SYSTEMS WERE AIRLINES

Amiga Airline: The airport terminal is nice and colorful, with friendly stewards and
stewardesses, easy access to the plane, an uneventful takeoff. For the more
adventurous: travelers can travel on multiple planes and visit multiple destinations all at
the same time. During these multiple plane trips the user can even take a side trip on
Mac, DOS, Unix, or Windows airlines.

DOS Airline: Everybody pushes the airplane until it glides, then jump on and let the
plane coast until it hits the ground again, then push again, jump on again and so on.

DOS with QEMM Airline: The same thing but with more leg room to push.

Mac Airline: All the stewards, stewardesses, captains, baggage handlers, and ticket
agents look the same, act the same, and talk the same. Every time you ask questions
about details, you are told you don't need to know, don't want to know, and everything
will be done for you without you having to know, so just shut up.

MPE Airline: It's a little difficult to get a ticket because you have to sign up for the right
plane, specify you want a

seat to sit in, identify each piece of baggage and list it on your ticket, and once you
enter the plane you may never see the same steward/ess twice. However, once the
plane takes off, the ride is exceptionally smooth and usually on-time, unless you cross a
timezone (this results in your being placed in a holding pattern for 1 hour until the
plane's clock and the local clocks are synchronized). Should the unthinkable happen
and your flight ends in a crash, you will be magically whisked back to the origin of the
flight where you will be placed on the next plane out.

OS/2 Airline: To board the plane, you have your ticket stamped ten different times by
standing in ten different lines. Then you fill out a form showing where you want to sit and
whether it should look and feel like an ocean liner, a passenger train, or a bus. If you
succeed in getting on board the plane and the plane succeeds in getting off the ground,
you have a wonderful trip...except for the times when the rudder and flaps get frozen in
position, in which case you have time to say your prayers and get yourself prepared
before the crash.

Windows Airline: The airport terminal is nice and colorful, with friendly stewards and
stewardesses, easy access to the plane, an uneventful takeoff...then the plane blows up
without any warning whatsoever.

NT Airline: Everyone marches out on the runway, says the password in unison, and
forms the outline of an airplane. Then they all sit down and make a whooshing sound
like they're flying.

Unix Airline: Everyone brings one piece of the plane with them when they come to the
airport. They all go out on the runway and put the plane together piece by piece,



arguing constantly about what kind of plane they're building.



Oxymorons

advanced basic
airline food (also: junk food, hospital food)
alone together
amateur expert

baby grand (piano)
black light

Brief survey

civil war
Congressional ethics
criminal justice

crisis management
Deafening silence
Death Benefits
divorce court

down escalator

dry wine

elementary calculus
evaporated milk
extra time

fast idle

flexible freeze (economics)
freezer burn

fresh frozen

friendly arguement
gourmet pizza
governmental efficiency
great depression
guest host

half full (also half empty)
Honest Crook
hopelessly optimistic
idiot savant
industrial park

irate patient

jumbo shrimp

Lean pork
Light-Heavyweight
live recording
mandatory option
marijuana initiative
Medium Large

Mild Abrasive

minor disaster

Mobil station



No-good Do-gooder!

non-stop flight

old news

Organized mess

original copy

Oxymorons in vehicle names: Dodge Ram
Oxymorons in vehicle names: Cherokee Pioneer
partially completed

passive agression

peacekeeper missile

perfect idiot

plastic glasses

pretty ugly

random logic (also fuzzy logic)

rap music

Renegade Lawmakers (from CNN during the battle in Moscow.)
Sales Engineer

scheduled spontaneity (From a Franklin time management class.)
second best

singular relationship

standard deviation

student teacher

sure bet

sweet sorrow

terribly nice

Turbo Diesel

unacceptable solution

work party

working vacation



Once upon a midnight dreary,

Fingers cramped and vision bleary,

System manuals piled high and wasted paper on the floor,
Longing for the warmth of bedsheets,

Still | sat there, doing spreadsheets;

Having reached the bottom line | took a floppy from the drawer.
Typing with a steady hand,

| then invoked the SAVE command

But got instead a reprimand: it read "Abort, Retry, Ignore?"

Was this some occult illusion?

Some maniacal intrusion?

There were choices Solomon himself had never faced before.
Carefully | weighed the options.

These three seemed to be the top ones.

Clearly, now | must now adopt one: Choose: "Abort, Retry, Ignore?"

With my fingers pale and trembling

Slowly toward the keyboard bending,

Longing for a happy ending, hoping all would be restored,
Praying for some guarantee

Finally | pressed a key ----

But on the screen what did | see? Again: "Abort, Retry, Ignore?"

| tried to catch the chips off-guard---

| pressed again but twice as hard

Luck was just not in the cards. | saw what | had seen before.
Now | typed in desperation

Trying random combinations

Still there came the incantation: Choose: "Abort, Retry, Ignore?"

There | sat, distraught, exhausted

by my own machine accosted

Getting up | turned away and paced across the office floor.

And then | saw an awful sight:

A bold and blinding flash of light---

A lightning bolt had cut the night and shook me to my core.

| saw the screen collapse and die;

"No No my database", | cried

| thought | heard a voice reply, "You'll see your data NEVERMORE!"

To this day | do not know

The place to which lost data goes

| bet it goes to heaven where the angels have it stored.
But as for productivity, well

| fear that it goes straight to hell



And that's the tale | have to tell. Your choice: "Abort, Retry, Ignore?"



WHY DID THE CHICKEN CROSS THE ROAD ?

The Star Trek Answers

*kkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkk

Chakotay: Whatever its reason, whatever its goals, we should respect its right to
cross the road and seek its own spiritual awareness.

Neelix: Actually, Captain, I'm not really familiar with the chickens in this system. But,
if you can catch it, | can cook it.

Riker: I don't know why, but | know how: with pleasure, sir.

Worf: 1don't know. KLINGON chickens do NOT cross roads.

HoloDoc: How should | know? No one tells me anything around here. | didn't even
know we added chickens to the crew. All | know is that it would have been nice,

BEFORE the chicken went off to the cross the road, if it had remembered to turn me off!

Dr. Crusher: If there's nothing wrong with the chicken, there must be something wrong
with the universe.

Dr. Soran: His heart just wasn'tinit. (Scenes of chicken torture with nanoprobes
have been edited out.)

Scotty: Because she couldna take much morrrrrre.

Odo: | don't know, but I'm sure it must be Quark's fault.
Quark: Who, me?

Charlie X: Because it didn't want to STAY...STAY...STAY...

Kirk: You chicken bastard, you killed my son...YOU chicken BASTARD, you killed...my
SON...you CHICKEN bastard....youkilledmy...son!

Troi: | feel the chicken's pain!
Kira: It was probably being chased by those cursed Cardassians.

Bones: Dammit, I'm a doctor, not an ornithologist!



Data: The chicken, in observing that it was on the opposite side of the 20th century
Terran paved roadway, was aware that its immediate goal should have been to traverse
the distance without interception by an kind of combustion-propelled personal trans
perambulate upon a conveyance normally reserved for the usage of...yes,

Sir.

Dr. Bashir: It probably heard about my amazing medical skills not to
mention my sexual prowess and came to get some pointers.

The Borg: Crossing the road is irrelevant. The chicken will be assimilated.
Hugh the Borg: Maybe it just needed a big hug!

B'Elanna: I'm sure it felt suffocated by all the bleeping regulations of bleeping Starfleet
and just couldn't stand it any longer!

Picard: There are four lights!

Q: Wouldn't you like to know? Too bad your puny human brain wouldn't be able to
comprehend the answer.

Uhura: Shall | open hailing frequencies so you can ask it, sir?
Tasha: That depends...was it fully functional?

Chekov: It must have been on its way to assist in saving my life for the billionth
time..did | scream this time?

Khan: With my last breath | spit at the chicken...
Harry: | don't know, it's my first mission.
Paris: Well, | think that...say, that's a lovely shirt you're wearing.

Harvey Mudd: Chicken? | don't remember any chicken. No no no, there's been a
terrible misunderstanding.

Janeway: Its primary goal was no doubt to get back to the Alpha Quadrant...and it
probably misses its dog.

Nurse Chapel: Oh, Spock!
Lwaxana: Oh, Jean-Luc!

Spock: Fascinating, Captain.



V'Ger: To join with the Creator.

The Grand Nagus: Stupid chicken! You don't cross the road all at once! You sneak
across it quietly, without anyone noticing!

Gul Dukat: Well, that's a very interesting question...I'm sure we can work out some
kind of arrangement to obtain that information that will be to everyone's satisfaction.

Kes: It was remembering back to the times when its ancestors crossed roads all the
time! They lost those abilities because they stopped using them!

O'Brien: No problem, Commander, I'll get right on it.

Wesley: I'm not sure, but | can figure it out if | reroute these systems and reconfigure
the warp field and run a complete internal whootchacallit on the computers and...

Sisko: It was seeking deeper meaning. Jake, do you see what we've learned from all
this?

Jake: Check out the babe that just came off that transport!

Geordi: Well, wherever it's going, I'm sure it'll have more luck with women than | do.
Sulu: Don't call me Tiny!

Sarek: Sometimes logic fails me where chickens are concerned.

Mr. Homn:

Dax: To get to the other side. Kurzon might have disagreed with me, Tobin I'm sure
wouldn't have had a clue,and then there's...

Tuvok: That's not a question we'd prefer to hear from a senior officer. It makes the
junior officers nervous.

*hkhhkhkhhhhhhhhhhhdhhhhrhhrhhrhhrrxsx

Other's Answers

dhkkhkhhhhhhhhhhhdhhdhdrhhrhhrhhrrxsx

Plato: For the greater good.
Karl Marx: It was a historical inevitability.

Hamlet: Because 'tis better to suffer in the mind the slings and arrows of outrageous
road maintenance than to take arms against a sea of oncoming vehicles.



Timothy Leary: Because that's the only kind of trip the Establishment would let it take.
Douglas Adams: Forty-two.

Nietzsche: Because if you gaze too long across the Road, the Road gazes also
across you.

Oliver North: National Security was at stake.

Gary Gygax: Because | rolled a 64 on the "Chicken Random Behaviors" chart on
page 497 of the Dungeon Master's Guide.

Trent Reznor: Because the world is F----- UP and it HATES ITSELF for being such a
PITIFUL WHINY USELESS S---!

Jean-Luc Picard: To see what's out there.
Darth Vader: Because it could not resist the power of the Dark Side.

Albert Einstein: Whether the chicken crossed the road or the road crossed the chicken
depends upon your frame of reference.

Roseanne Barr: Urrrrrp. - What chicken?

Buddha: If you ask this question, you deny your own chicken-nature.
Salvador Dali: The Fish.

Darwin: It was the logical next step after coming down from the trees.
Bob Dylan: How many roads must one chicken cross?

Gerald R. Ford: It probably fell from an airplane and couldn't stop its forward
momentum.

Sigmund Freud: The chicken obviously was female and obviously interpreted the pole
on which the crosswalk sign was mounted as a phallic symbol of which she was
envious, selbstverstaendlich.

Saddam Hussein: This was an unprovoked act of rebellion and we were quite justified
in dropping 50 tons of nerve gas on it.

Lee lacocca: It found a better car, which was on the other side of the road.

Martin Luther King: It had a dream.



James Tiberius Kirk: To boldly go where no chicken has gone before.
Stan Laurel: I'm sorry, Ollie. It escaped when | opened the run.

Groucho Marx: Chicken? What's all this talk about chicken? Why, | had an uncle
who thought he was a chicken. My aunt almost  divorced him, but we needed the

eggs.

Karl Marx: To escape the bourgeois middle-class struggle.

Sir Isaac Newton: Chickens at rest tend to stay at rest. Chickens in motion tend to
cross the road.

Jack Nicholson: 'Cause it (censored) wanted to. That's the (censored) reason.
Thomas Paine: Out of common sense.

Michael Palin: Nobody expects the banished inky chicken!

Ronald Reagan: | forget.

John Sununu: The Air Force was only too happy to provide the transportation, so quite
understandably the chicken availed himself of the opportunity.

The Sphinx: You tell me.
Mae West: | invited it to come up and see me sometime.

Mr. Scott: 'Cos ma wee transporter beam was na functioning properly. Ah canna work
miracles, Captain!

Howard Cosell: It may very well have been one of the most astonishing events to grace
the annals of history. An historic, unprecedented avian biped with the temerity to attempt
such an herculean achievement formerly relegated to homo sapien pedestrians is truly
a remarkable occurrence.



Troutman's Laws of Computer Programming

Any running program is obsolete.

Any planned program costs more and takes longer.

Any useful program will have to be changed.

Any useless program will have to be documented.

The size of a program expands to fill all available memory.

The value of a program is inversely proportional to the weight of output

. The complexity of a program grows until it exceeds the capability of the
maintainers.

8. Information necessitating a change in design is always conveyed to the
implementors after the code is written. Corollary: Given a simple choice between one
obviously right way and one obviously wrong way, it is often wiser to choose the wrong
way, so as to expedite subsequent revision.

9. The more innocuous a modification appears, the more code it will require
rewriting.

10. If a test installation functions perfectly, all subsequent systems will malfunction.
11.  Not until a program has been in production for at least six months will the most
harmful error be discovered.

12. Interchangeable modules won't.

13.  Any system that relies on computer reliability is unreliable.

14. Any system that relies on human reliability is unreliable.

15. Investment in reliability increases until it exceeds the probable cost of errors, or
until someone insists on getting some useful work done.

16. Adding manpower to a late software project makes it later.

17. There's always one more bug.

NOORWON =



Real Programmers Don't Write Specs

Real Programmers don't write specs -- users should consider themselves lucky to get
any programs at all and take what they get.

Real Programmers don't comment their code. If it was hard to write, it should be hard
to understand and even harder to modify.

Real Programmers don't write application programs; they program right down on the
bare metal. Application programming is for feebs who can't do systems programming.

Real Programmers don't eat quiche. In fact, real programmers don't know how to
SPELL quiche. They eat Twinkies, and Szechwan food.

Real Programmers don't write in COBOL. COBOL is for wimpy applications
programmers.

Real Programmers' programs never work right the first time. But if you throw them on
the machine they can be patched into working in "only a few" 30-hour debugging
sessions.

Real Programmers don't write in FORTRAN. FORTRAN is for pipe stress freaks and
crystallography weenies.

Real Programmers never work 9 to 5. If any real programmers are around at 9 AM, it's
because they were up all night.

Real Programmers don't write in BASIC. Actually, no programmers write in BASIC,
after the age of 12.

Real Programmers don't write in PL/l.  PL/l is for programmers who can't decide
whether to write in COBOL or FORTRAN.

Real Programmers don't play tennis, or any other sport that requires you to change
clothes. Mountain climbing is OK, and real programmers wear their climbing boots to
work in case a mountain should suddenly spring up in the middle of the machine room.

Real Programmers don't document. Documentation is for simps who can't read the
listings or the object deck.

Real Programmers don't write in PASCAL, or BLISS, or ADA, or any of those pinko
computer science languages. Strong typing is for people with weak memories.

Real Programmers only write specs for languages that might run on future hardware.
Noboby trusts them to write specs for anything homo sapiens will ever be able to fit on a
single planet.



Real Programmers don't play tennis or any other sport which requires a change of
clothes. Mountain climbing is ok, and real programmers often wear climbing boots to
work in case a mountain should suddenly spring up in the middle of the machine room.

Real Programmers spend 70\% of their work day fiddling around and then get more
done in the other 30\% than a user could get done in a week.

Real Programmers are surprised when the odometers in their cars don't turn from
99999 to 9999A.

Real Programmers are concerned with the aesthetics of their craft; they will writhe in
pain at shabby workmanship in a piece of code.

Real Programmers will defend to the death the virtues of a certain piece of peripheral
equipment, especially their lifeline, the terminal.

Real Programmers never use hard copy terminals, they never use terminals that run at
less than 9600 baud, they never use a terminal at less than its maximum practical
speed.

Real Programmers think they know the answers to your problems, and will happily tell
them to you rather than answer your questions.

Real Programmers never program in COBOL, money is no object.

Real Programmers never right justify text that will be read on a fixed-character-width
medium.

Real Programmers wear hiking boots only when it's much too cold to wear sandals.
When it's only too cold, they wear socks with their sandals.

Real Programmers don't think that they should get paid at all for their work, but they
know that they're worth every penny that they do make.

Real Programmers log in first thing in the morning, last thing before they go to sleep,
and stay logged in for lots of time in between.

Real programmers don't draw flowcharts. Flowcharts are after all, the illerate's form of
documentation.

Real Programmers don't use Macs. Computers which draw cute little pictures are for
wimps.

Real Programmers don't read manuals. Reliance on a reference is the hallmark of a
novice and a coward.



Real Programmers don't write in COBOL. COBOL is for gum chewing twits who
maintain ancient payroll programs.

Real Programmers don't write in FORTRAN. FORTRAN is for wimpy engineers who
wear white socks. The get excited over finite state analysis and nuclear reactor
simulations.

Real Programmers don't write in Modula-2. Modula-2 is for insecure analretentives
who can't choose between Pascal and COBOL.

Real Programmers don't write in APL, unless the whole program can be written on one
line.

Real Programmers don't write in Lisp. Only effeminate programmers use more
parentheses than actual code.

Real Programmers don't write in Pascal, Ada or any of those other pinko computer
science languages. Strong variable typing is for people with weak memories.

Real Programmers distain structured programming. Structured programming is for
compulsive neurotics who were prematurely toilet trained. They wear neckties and
carefully line up sharp pencils on an otherwise clear desk.

Real Programmers scorn floating point arithmetic. The decimal point was invented for
pansy bedwetters who are unable to think big.

Real Programmers know every nuance of every instruction and use them all in every
Real Program. Some candyass architectures won't allow EXECUTE instructions to
address another EXECUTE instruction as the target instruction. Real Programmers
despise petty restrictions.

Real Programmers Don't use PL/I. PL/l is for insecure momma's boys who can't
choose between Cobol and Fortran.

Real Programmers don't like the team programming concept. Unless, of course, they
are the Chief Programmer.

Real Programmers have no use for managers. Managers are sometimes a necessary
evil. Managers are good for dealing with personnel bozos, bean counters, senior
planners and other mental defectives.

Real programmers ignore schedules.

Real Programmers don't bring brown bag lunches to work. If the vending machine sells
it, they eat it. If the vending machine doesn't sell it, they don't eat it.



Real Programmers think better when playing Adventure or Rogue.
Real Programmers use C since it's the easiest language to spell.
Real Programmers don't use symbolic debuggers, who needs symbols.

Real Programmers only curse at inanimate objects.



Menu Help

How do | assign a method to a dynamically created menu item?
What is the easiest way to change the control menu of a form based application ?

How do | manipulate (enable/disable) the 'close' item on the default system menu?




Q: How do | assign a method to a dynamically created menu item?

A:
unit Unitl;
interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Forms, Dialogs, StdCtrls, Menus;

type
TForml = class (TForm)
MainMenul: TMainMenu;
onel: TMenultem;
Buttonl: TButton;
N111l: TMenultem;
N121: TMenultem;
procedure ButtonlClick (Sender: TObject);
private
{ Private declarations }
public
{ Public declarations }
procedure MonkeyBoy (sender: TObject);
end;

var
Forml: TForml;

implementation
{SR *.DFM}
procedure TForml.ButtonlClick(Sender: TObject);

var
m: TMenultem;

begin
m := TMenultem.create (self);
with m do
begin
name := 'Lloydl';
caption := '1-3';
OnClick := MonkeyBoy;
end;
onel.add (m) ;
end;

procedure TForml.MonkeyBoy (sender: TObject);
begin

ShowMessage ('Lloyd is the greatest!!!');
end;

end.

Graphics,

Controls,






Sendkeys

Here is the poor man's version:
p

procedure keybd Event; external 'USER' index 289;

procedure PostVKey (bVirtKey: byte; Up: Boolean);
var

AXReg,BXReg : Word;

AXHigh, AXLow, BXHigh, BXLow : Byte;

function MakeWord(L,H: Byte): Word;

begin
MakeWord := (H shl 8) + L;

end;

begin
AXLow := bVirtKey;
if up then AXHigh := $80 else AXHigh := $0;
AXreg := MakeWord (AXLow,AXHigh) ;
BXLow := VkKeyScan (bVirtKey) ;
BXHigh := 0;
BXReg := MakeWord (BXLow,BXHigh) ;
asm

mov bx,BXreg;
mov ax,AXReg;
end;
Keybd Event;
end;

then to simulate Shift+Ins you need:-

PostVKey (VK _Shift, false);
PostVKey (VK Insert, false);
PostVKey (VK Insert, True);
PostVKey (VK _Shift, True);

Here is the Rolls-Royce version:

Note: This is commercial and copyrighted code. The
source code may not be sold for profit (unless Steve is
doing the selling).

{This unit is to be included in the app that you are running.}
unit SKeys;

interface

type
{ Return values for SendKeys function }
TSendKeyError = (sk None, sk FailSetHook, sk InvalidToken, sk UnknownError);



function SendKeys(S: String): TSendKeyError;
implementation
function SendKeys; external 'SendKey' index 2;

end.

(********************************************)
{Here is the DLL that is used.}
library SendKey;

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, KeyDefs;

type
{ Error codes }
TSendKeyError = (sk None, sk FailSetHook, sk InvalidToken, sk UnknownError);
{ exceptions }
ESendKeyError = class (Exception);

ESetHookError = class (ESendKeyError) ;
EInvalidToken = class (ESendKeyError) ;

{ a TList descendant that know how to dispose of its contents }

TMessagelList = class(TList)
public

destructor Destroy; override;
end;

destructor TMessagelList.Destroy;
var
i: longint;
begin
{ deallocate all the message records before discarding the list }
for i := 0 to Count - 1 do
Dispose (PEventMsg (Items[i]));
inherited Destroy;
end;

var
{ variables global to the DLL }
MsgCount: word;
MessageBuffer: TEventMsg;
HookHandle: hHook;
Playing: Boolean;
MessagelList: TMessagelist;
AltPressed, ControlPressed, ShiftPressed: Boolean;

NextSpecialKey: TKeyString;
function MakeWord (L, H: Byte): Word;

{ macro creates a word from low and high bytes }
inline (



S$5A/ { pop dx }
$58/ { pop ax }
S8A/SE2) ; { mov ah, dl }

procedure StopPlayback;
{ Unhook the hook, and clean up }
begin
{ if Hook is currently active, then unplug it }
if Playing then
UnhookWindowsHookEx (HookHandle) ;
Messagelist.Free;

Playing := False;
end;
function Play(Code: integer; wParam: word; lParam: Longint): Longint; export;

{ This is the JournalPlayback callback function. It is called by Windows }

{ when Windows polls for hardware events. The code parameter indicates what }
{ to do. }

begin
case Code of

hc Skip: begin
{ hc_Skip means to pull the next message out of our list. If we }

{ are at the end of the list, it's okay to unhook the JournalPlayback }
{ hook from here. }

{ increment message counter }
inc (MsgCount) ;
{ check to see if all messages have been played }

if MsgCount >= Messagelist.Count then

StopPlayback
else
{ copy next message from list into buffer }
MessageBuffer := TEventMsg (MessagelList.Items[MsgCount]”");
Result := 0;

end;

hc GetNext: begin

{ hc_GetNext means to fill the wParam and lParam with the proper }

{ values so that the message can be played back. DO NOT unhook }

{ hook from within here. Return value indicates how much time until }
{ Windows should playback message. We'll return 0 so that it's }

{ processed right away. }
{ move message in buffer to message queue }

PEventMsg (lParam)” := MessageBuffer;
Result := 0 { process immediately }

end

else
{ if Code isn't hc_Skip or hc GetNext, then call next hook in chain }
Result := CallNextHookEx (HookHandle, Code, wParam, lParam);

end;
end;

procedure StartPlayback;



{ Initializes globals and sets the hook }
begin
{ grab first message from list and place in buffer in case we }

{ get a hc_GetNext before and hc_ Skip }

MessageBuffer := TEventMsg (MessagelList.Items[0]");

{ initialize message count and play indicator }

MsgCount := 0;

{ initialize Alt, Control, and Shift key flags }

AltPressed := False;

ControlPressed := False;

ShiftPressed := False;

{ set the hook! }

HookHandle := SetWindowsHookEx (wh JournalPlayback, Play, hInstance, 0);

if HookHandle = 0 then
raise ESetHookError.Create('Couldn''t set hook'")

else

Playing := True;
end;

procedure MakeMessage (vKey: byte; M: word);
{ procedure builds a TEventMsg record that emulates a keystroke and }

{ adds it to message list }

var
E: PEventMsg;
begin
New (E) ; { allocate a message record }
with E* do begin
Message := M; { set message field }
{ high byte of ParamlL is the vk code, low byte is the scan code }
ParamlL := MakeWord (vKey, MapVirtualKey (vKey, 0));
ParamH := 1; { repeat count is 1 }
Time := GetTickCount; { set time }
end;
MessageList.Add (E) ;
end;

procedure KeyDown (vKey: byte);
{ Generates KeyDownMessage }
begin
{ don't generate a "sys" key if the control key is pressed (Windows quirk) }
if (AltPressed and (not ControlPressed) and (vKey in [Ord('A')..Ord('Z')]))
or
(vKey = vk Menu) then
MakeMessage (VKey, wm_SysKeyDown)
else
MakeMessage (VKey, wm KeyDown) ;

end;

procedure KeyUp (vKey: byte);

{ Generates KeyUp message }

begin
{ don't generate a "sys" key if the control key is pressed (Windows quirk) }
if AltPressed and (not ControlPressed) and (vKey in [Ord('A')..Ord('Z'")])



then
MakeMessage (VKey, wm SysKeyUp)
else
MakeMessage (VvKey, wm_ KeyUp) ;
end;

procedure SimKeyPresses (VKeyCode: Word) ;
{ This function simulates keypresses for the given key, taking into }
{ account the current state of Alt, Control, and Shift keys }

begin
{ press Alt key if flag has been set }
if AltPressed then
KeyDown (vk_Menu) ;
{ press Control key if flag has been set }
if ControlPressed then
KeyDown (vk Control) ;

{ if shift is pressed, or shifted key and control is not pressed... }
if (((Hi(VKeyCode) and 1) <> 0) and (not ControlPressed)) or ShiftPressed
then
KeyDown (vk _Shift); { ...press shift }
KeyDown (Lo (VKeyCode) ); { press key down }
KeyUp (Lo (VKeyCode) ) ; { release key }
{ 1f shift is pressed, or shifted key and control is not pressed... }
if (((Hi(VKeyCode) and 1) <> 0) and (not ControlPressed)) or ShiftPressed
then
KeyUp (vk_Shift); { ...release shift }

{ if shift flag is set, reset flag }
if ShiftPressed then begin
ShiftPressed := False;
end;
{ Release Control key if flag has been set, reset flag }
if ControlPressed then begin
KeyUp (vk Control);
ControlPressed := False;
end;
{ Release Alt key if flag has been set, reset flag }

if AltPressed then begin
KeyUp (vk_Menu) ;
AltPressed := False;
end;
end;

procedure ProcessKey(S: String);
{ This function parses each character in the string to create the message list

}

var
KeyCode: word;
Key: byte;

index: integer;
Token: TKeyString;
begin
index := 1;
repeat
case S[index] of



KeyGroupOpen : begin

{ It's the beginning of a special token! }
Token := '';
inc (index) ;
while S[index] <> KeyGroupClose do begin

{ add to Token until the end token symbol is encountered }
Token := Token + S[index];
inc (index) ;
{ check to make sure the token's not too long }
if (Length(Token) = 7) and (S[index] <> KeyGroupClose) then
raise EInvalidToken.Create ('No closing brace');
end;
{ look for token in array, Key parameter will }
{ contain vk code if successful }
if not FindKeyInArray (Token, Key) then

raise EInvalidToken.Create('Invalid token');
{ simulate keypress sequence }
SimKeyPresses (MakeWord (Key, 0));
end;

AltKey : begin
{ set Alt flag }
AltPressed := True;
end;

ControlKey : begin
{ set Control flag }
ControlPressed := True;
end;

ShiftKey : begin
{ set Shift flag }
ShiftPressed := True;
end;

else begin
{ A normal character was pressed }

{ convert character into a word where the high byte contains }
{ the shift state and the low byte contains the vk code }
KeyCode := vkKeyScan (MakeWord (Byte (S[index]), 0));
{ simulate keypress sequence }
SimKeyPresses (KeyCode) ;
end;
end;
inc (index) ;
until index > Length(S);
end;

function SendKeys (S: String): TSendKeyError; export;
{ This is the one entry point. Based on the string passed in the S }

{ parameter, this function creates a list of keyup/keydown messages, }

{ sets a JournalPlayback hook, and replays the keystroke messages. }



var

i: byte;
begin

try
Result := sk None; { assume success }
MessageList := TMessagelList.Create; { create list of messages }
ProcessKey (S) ; { create messages from string }
StartPlayback; { set hook and play back messages }

except

{ 1if an exception occurs, return an error code, and clean up }
on E:ESendKeyError do begin

MessagelList.Free;
if E is ESetHookError then

Result := sk FailSetHook
else 1if E is EInvalidToken then
Result := sk InvalidToken;
end
else

{ Catch-all exception handler ensures than an exception }
{ doesn't walk up into application stack }
Result := sk UnknownError;
end;
end;

exports
SendKeys index 2;

begin
end.

(********************************************)
unit Keydefs;
interface

uses WinTypes;

const
MaxKeys = 24;
ControlKey = '*';
AltKey = '@';
ShiftKey = '~';
KeyGroupOpen = '{';
KeyGroupClose = '}';

type

TKeyString = Stringl[7];

TKeyDef = record
Key: TKeyString;
vkCode: Byte;

end;

const
KeyDefArray : array[l..MaxKeys] of TKeyDef = (



Key: 'F1'; vkCode: vk F1

4

( )

(Key: 'F2'; vkCode: vk F2),
(Key: 'F3'; vkCode: vk F3),
(Key: 'F4'; vkCode: vk F4),
(Key: 'F5'; vkCode: vk F5),
Key: 'F6'; vkCode: vk F6),
Key: 'F7'; vkCode: vk F7),
Key: 'F8'; vkCode: vk F8),
Key: 'F9'; vkCode: vk F9),
Key: 'F10'; vkCode: vk F10),
Key: 'F11'; vkCode: vk F11),

Key: 'INSERT'; vkCode: vk Insert),

(
(
(
(
(
(
(Key: 'F12'; vkCode: vk F12),
(
(Key: 'DELETE'; vkCode: vk Delete),
(
(
(
(

Key: 'HOME'; vkCode: vk Home),
Key: 'END'; vkCode: vk End),

Key: 'PGUP'; vkCode: vk Prior),
Key: 'PGDN'; vkCode: vk Next),
(Key: 'TAB'; vkCode: vk Tab),
(Key: 'ENTER'; vkCode: vk Return),
(Key: 'BKSP'; vkCode: vk Back),
(Key: 'PRTSC'; vkCode: vk SnapShot),
(Key: 'SHIFT'; vkCode: vk Shift),

(

Key: 'ESCAPE'; vkCode: vk Escape));

function FindKeyInArray (Key: TKeyString; var Code: Byte): Boolean;
implementation
uses SysUtils;

function FindKeyInArray (Key: TKeyString; var Code: Byte): Boolean;
{ function searches array for token passed in Key, and returns the }

{ virtual key code in Code. }

var
i: word;
begin
Result := False;
for i := Low(KeyDefArray) to High (KeyDefArray) do
if UpperCase (Key) = KeyDefArray[i].Key then begin
Code := KeyDefArrayl[i].vkCode;
Result := True;
Break;
end;
end;

end.



Q: How can | use the aggregate functions (avg, sum, count, max, min) with a table?
A:

select customer.company, Sum(orders.AmountPaid)
from customer, orders

where (customer.CustNo = orders.CustNo)

group by customer.company

order by customer.company



Here are some examples of how to use the TBlobStream to get text from a memofield.

{This one copies from one memo field to another.}

procedure TForml.ButtonlClick (Sender: TObject):;
var
bl, b2: TBlobStream;
begin
bl := TBlobStream.create (TablelNotes, bmRead);
try
table2.edit;
b2 := TBlobStream.create (Table2MyBlob, bmReadWrite);
try
b2.CopyFrom(bl, bl.size);
finally
b2.free;
end;
finally
bl.free;
end;
table2.post;
end;

{Write to a stream.}
procedure TForml.ButtonlClick (Sender: TObject);
var
Stream: TBlobStream;
s: string;
begin
tablel.edit;
Stream := TBlobStream.Create (TablelNotes, bmReadWrite);
try
Stream.Seek (0, 2); {Seek 0 bytes from the stream's end point (2).}
s := 'Lloyd is really cool.';
Stream.write(s[1l], length(s));
finally
Stream.Free;
end;
tablel.post;
end;

{Read from a stream.}
procedure TForml.ButtonlClick (Sender: TObject);
var

Buffer: PChar;

Size: Integer;

Stream: TBlobStream;

begin
{ Here is how it is done from a query: }
{ Stream := TBlobStream.Create (queryl.FieldByName ('MemoField') as TBlobField,
bmRead) ; }
Stream := TBlobStream.Create (TablelMemoField, bmRead);

try



Size := Stream.Seek (0, 2);
Stream.Seek (0, 0);
Inc (Size);
GetMem (Buffer, Size);
try
FillChar (Buffer”, Size, #0);
Stream.Read (Buffer”, Size);
Memol.SetTextBuf (Buffer);
finally
FreeMem (Buffer, Size);
end;
finally
Stream.Free;
end;
end;

See also:
How do | fill a TMemo from a PChar using a TBlobStream?




Q: How do | make tables in a loop?
A:

procedure TForml.ButtonlClick (Sender: TObject);
const
MaxTableCount = 100;
MaxFieldCount 50;
var
t: tTable;
TableCount, xFieldCount: integer;
begin
for TableCount := 1 to MaxTableCount do begin
t := tTable.create(self);
with t do begin
DatabaseName := 'Lloyd';
TableName := 'hoser' + IntToStr (TableCount);
TableType := ttParadox;

with FieldDefs do begin
Clear;
for xFieldCount := 1 to MaxFieldCount do
Add('Field' + IntToStr (xFieldCount), ftInteger, 0, false);
end;

with IndexDefs do begin

Clear;

Add('FieldlIndex', 'Fieldl', [ixPrimary, ixUnique]):;
end;

CreateTable;
close;
free;
end;
end;
end;



Q: How do | disable and enable the keyboard ?

A: Hereis a DLL to do it:

Library KillKB;

Uses Wintypes, WinProcs
{SIFNDEF VER80}
,Win31
{SENDIF}
Var
oldHook: HHook;

Function KbHook( code: Integer; wparam: Word; lparam: LongInt ): LongInt;
export;
Begin
If code < 0 Then
KbHook := CallNextHookEx( oldHook, code, wparam, lparam )
Else
KbHook := 1;
End; { KbHook }

Function DisableKeyboard: Boolean; export;

Begin
oldHook := SetWindowsHookEx( WH KEYBOARD, KbHook, HInstance, 0 );
DisableKeyboard := oldHook <> 0;

End;

Procedure EnableKeyboard; export;
Begin
If oldHook <> 0 Then Begin
UnhookWindowshookEx ( oldHook );

oldHook := 0;
End; { If }
End;
exports

DisableKeyboard index 1,
EnableKeyboard index 2;

Begin
oldHook := 0;
End.

Note: There are a few key combinations that are not passed on to apps at all so they
cannot be trapped by a hook. Ctrl-Alt-Del may be one of them but I'm not sure. Just try
to see if you can get the blue screen when you have disabled the keyboard via the DLL.
Other dubious candiates are Alt-Tab and Ctrl-Esc.



Q: How do | save an object to a disk file?

A: Use a stream to write to a disk file. The object must be a component and is written
to the stream like this:

var Stream : TFileStream ;
begin
Stream := TFileStream.Create( 'AFile', fmCreate )
try
Stream.WriteComponent ( Buttonl )

r

’

Stream.WriteComponent ( Gridl ) ; etc.
finally
Stream.Free ;
end ;
end ;
To read it back, do this:
var Stream : TFileStream ;
Button2 : TButton ;
Grid2 : TStringGrid ;
begin
Stream := TFileStream.Create( 'AFile', fmOpenRead ) ;
try
Button2 := Stream.ReadComponent( nil ) as TButton ;
Stream.WriteComponent ( Gridl ) ; etc.
finally
Stream.Free ;
end ;
end ;

At some point you need to register the classes you're going to write and read. For
example, you could put the following in the forms OnCreate handler:

RegisterClass ( TButton ) ;
RegisterClass( TStringGrid )

’

If you don't register the classes you'll get a 'Class not found' error when you try to read
the object back.



TReport

How do | connect to TReport?




Connect (TReport)

var
DatabaseName, ServerName, UserName, ThePassword: string;

begin
ServerName := 'BigRedS';
UserName := 'SYSDBA';
ThePassword := 'masterkey';
if Locallnterbase then DatabaseName := 'd:\delphilwork\bigreds.gdb'
else DatabaseName := 'conan@voll:\delphi\work\bigreds.gdb';

if Reportl.Connect (ctIDAPIInterBase, ServerName, UserName, ThePassword,
DatabaseName) then Reportl.Run;
end;

The Server type is in reports.pas. Here are the constants:

const
ctDBase = 2;
ctExcel = 3;
ctParadox = 4;
ctAscii = 5;

ctSglServer = 6;
ctOracle = 7;
ctDB2 = 8
ctNetSQL 9;
ctSybase = 10;
ctBtrieve = 11;
ctGupta = 12;
ctIngres = 13;
ctWatcom 14;
ctOcelot = 15;
ctTeraData = 16;
ctDB2Gupta = 17;
ctAS400 = 18;

ctUnify = 19;

ctQry = 20;
ctMinNative = 2;
ctMaxNative = 20;
ctODBCDBase = 40;
ctODBCExcel = 41;
ctODBCParadox = 42;
ctODBCSglServer = 43;
ctODBCOracle = 44;
ctODBCDB2 = 45;
ctODBCNetSgl = 46;
ctODBCSybase 47;
ctODBCBtrieve = 48;
ctODBCGupta = 49;
ctODBCIngres = 50;
ctODBCDB2Gupta = 51;

|~

ctODBCTeraData = 52;
ctODBCAS400 = 53;

ctODBCDWatcom = 54;
ctODBCDefault = 55;

ctODBCUnify = 56;



ctMinODBC = 40;
ctMaxODBC = 56;
ctIDAPIStandard = 60;
ctIDAPIParadox = 61;
ctIDAPIDBase = 62;
ctIDAPIAscii = 63;
ctIDAPIOracle = 64;
CtIDAPISybase 65;
ctIDAPINovSqgl 06;
ctIDAPIInterbase = 67;
ctIDAPIIBMEE = 68;
ctIDAPIDB2 = 69;
ctIDAPIInformix = 70;
ctMinIDAPI = 60;
ctMaxIDAPI = 70;



Q: How do | have lines in a listbox as different colors?

A: Neil Rubenking posted this code about a week ago, and | have altered it a little.
should draw all the entries in a listbox as red. (Don't forget to change the Listbox's
style to IbOwnerDrawFixed.)

procedure TForml.ListBoxlDrawItem(Control: TWinControl; Index: Integer;
Rect: TRect; State: TOwnerDrawState); VAR

S : String;
Temp: array[0..255] of Char;
begin
WITH Control AS TListBox, Canvas DO
BEGIN
S := Items[Index];

FillRect (Rect) ;
MoveTo (Rect.Left+2, Rect.Top);
SetTextAlign (Canvas.Handle, TA LEFT OR TA UPDATECP);
Font.Color := clRed;
StrPCopy (Temp, S);
WinProcs.TextOut (Canvas.Handle, 0, 0, Temp, StrLen (Temp)):
END;
end;

{*******************************}

Here is a version that does not use the API call, but does the same thing:

unit Unitl;
interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls;

type
TForml = class (TForm)
ListBoxl: TListBox;
procedure FormActivate (Sender: TObject);
procedure ListBoxlDrawlItem(Control: TWinControl; Index: Integer;
Rect: TRect; State: TOwnerDrawState);

private
{ Private declarations }
public
{ Public declarations }
end;
var

Forml: TForml;
implementation

{$R *.DFM}



procedure TForml.FormActivate (Sender: TObject);
begin

listboxl.items.LoadFromFile ('c:\autoexec.bat');
end;

procedure TForml.ListBoxlDrawlItem (Control: TWinControl; Index:
Rect: TRect; State: TOwnerDrawState);
begin
WITH Control AS TListBox, Canvas DO BEGIN
FillRect (Rect) ;
MoveTo (Rect.Left+2, Rect.Top):;
SetTextAlign (Canvas.Handle, TA LEFT OR TA UPDATECP);

Font.Color := clGreen;
TextOut (0, 0, Items[Index]);
END;

end;

end.

Integer;



TSpeedButton

How do | paste a bitmap or glyph on a speedbutton without losing the background
color?

How can | write a function that generically responds to all Speedbutton clicks?
Is there an easy way to assign speedbutton properties via iteration at runtime?



TListBox

How can | get a horizontal scrollbar on a list box?
How do you fill a listbox with multiple lines?

How do | fill a listbox from a table?

How do | make a TListBox with displayable tabs?
How do | have lines in a listbox as different colors?
How do | fill a listbox from a memo field in a table?
How do | do click and drag in a TListbox?




Microsoft marketing strategy (MARKET.EXE):

#include <nonsense.h>

#include <lies.h>

#include <spyware.h> /* Microsoft Network Connectivity library */
#include <process.h> /* For the court of law */

#define say(x) lie(x)

#define computeruser ALL WANT TO BUY OUR BUGWARE

#define next year soon

#define the product is ready to ship another beta version

void main ()

{
if (latest window version>one month old)
{
if (there are still bugs)
market (bugfix) ;
if (sales_drop below certain point)
raise (RUMOURS ABOUT A NEW BUGLESS VERSION) ;
}
while (everyone chats about new version)
{
make false promise (it will be multitasking); /* Standard Call, in lie.h */
if (rumours_ grow wilder)
make false promise (it will be plug n play);
if (rumours grow even wilder)
{
market time=3Dripe;
say ("It will be ready in one month);
order (programmers, stop fixing bugs in old version);
order (programmers, start brainstorm about new version);
order (marketingstaff, permission to spread nonsense);
vapourware=3DTRUE;
break;
}
}
switch (nasty questions of the worldpress)
{
case WHEN WILL IT BE READY:
say ("It will be ready in", today+30 days," we're just testing");
break;
case WILL THIS PLUG AND PLAY THING WORK:
say ("Yes it will work");
ask (programmers, why does it not work);
pretend(there is no problem);
break;
case WHAT ARE MINIMAL HARDWARE REQUIREMENTS:
say ("It will run on a 8086 with lightning speed due to"
" the 32 bits architecture");
inform (INTEL, "Pentium sales will rise skyhigh");
inform (SAMSUNG, "Start a new memorychip plant"
"'because all those customers will need at least 32 megs");
inform (QUANTUM, "Thanks to our fatware your sales will triple");
get big bonus (INTEL, SAMSUNG, QUANTUM) ;
break;



case DOES MICROSOFT GET TOO MUCH INFLUENCE:
say ("Oh no, we are just here to make a better world for
everyone");
register (journalist, Big Bill Book);
when (time is ripe)
{
arrest (journalist);
brainwash (journalist) ;
when (journalist says windows95 is bugfree)
{
order (journalist, "write a nice objective article");
release (journalist);
}
}
break;
}
while (vapourware)
{
introduction date++; /* Delay */
if (no_one believes anymore there will be a release)
break;
say ("It will be ready in", today+ONE MONTH) ;
}
release (beta version)
while (everyone is dumb enough to buy our bugware)
{
bills bank account +=3D 150*megabucks;
release (new_and even better beta version);
introduce (more memory requirements);
if (customers report installation problems)
{
say ("that is a hardware problem, not a software problem");
if (smart customer says but you promised plug and play)
{
ignore (customer) ;
order (microsoft intelligence agency, "Keep an eye on this

guy");

}

if (there is another company)

{
steal (their ideas);
accuse (company, stealing our ideas);
hire(a lot of lawyers); /* in process.h */
wait (until other company cannot afford another lawsuit);
buy out (other company) ;

}

}

/* Now everyone realizes that we sell bugware and they are all angry at us*/
order (plastic surgeon, make bill look like poor guy);
buy(nice little island); hire (harem);
laugh_at (everyone,
for having the patience year after year for another unfinished version); }

void bugfix(void)

charge (a_lot of money)



if (customer says he does not want to pay for bugfix)
say ("It is not a bugfix but a new version");
if (still complaints)
{
ignore (customer) ;
register (customer, big Bill book);
/* We'll get him when everyone uses Billware!!*/

}



Tabbed Notebook

How do | add items to a tabbed notebook at runtime?

How do | iterate through tabbed notebook pages to see each object?
How do | fake TTabbedNotebook with multiple forms?

How do | draw on the pages of a TTabbedNotebook?
How can | conserve resources with a TTabbedNotebook?




Q: | get an "Error creating cursor handle" message. Here is my SQL statement:

update "parts.db"

set "parts.db"."Retail Price" =

(("parts.db"."Retail Price" * :percentage) + "parts.db"."Retail Price")
where "parts.db"."Part Number" like :pre

and "parts.db"."Retail Price" < :high

and "parts.db"."Retail Price" > :low

A: Update queries do not return any information. They just update. You used open or
active := true when you called the SQL statement. That expects a cursor to be
returned. Use Execsor instead.



ODBC

How do | update Access records?
How do | connect to Access via ODBC?



Q: How do | update Access records?

A: The ODBC driver provided with Access 2.0 (ODBCJT16.DLL with a file size of <65k)
is designed to work only within the Microsoft Office environment. To work with
ODBC/Access in Delphi, you need the Microsoft ODBC Desktop Driver
(ODBCJT16.DLL, internal version number 02.00.23.17, with a file size of approx 260k)
kit, part# 273-054-030 available from Microsoft Direct for $10.25US (post on WINEXT
for where to get it in your country if you are not in the US). It is also available on the

Jan. MSDN, Level 2 (Development Platform) CD4 \ODBC\X86 as part of the ODBC 2.1
SDK. Be aware that your redistribution rights for the Desktop Drivers are pretty
restricted by Microsoft. For info on (and objections to) the restrictions post on the
WINEXT forum.

You also need the following ODBC files.

Minimum:

ODBC.DLL 03.10.1994, Version 2.00.1510
ODBCINST.DLL 03.10.1994, Version 2.00.1510
ODBCINST.HLP  11.08.1993

ODBCADM.EXE 11.08.1993, Version 1.02.3129

Better:
ODBC.DLL 12.07.1994, Version 2.10.2401
ODBCINST.DLL  12.07.1994, Version 2.10.2401
ODBCINST.HLP  12.07.1994
ODBCADM.EXE 12.07.1994, Version 2.10.2309
The following steps will get you started in Delphi
1. Using the ODBC Administrator, set-up a datasource for your database. Be sure to
specify a path to your mdb file. For the purposes of this explanation we'll say that the
datasource name is MYDSN. The correct driver name is:
Microsoft Access Driver (*.mdb)
2. Load the BDE Configuration utility.

3. Select New Driver.

4. Give the driver a name (call it ODBC_MYDSN).



Q: Crystal Reports does not let the user select a printer at run-time. How do | provide
this functionality.

1) Include CRPE and PRINTERS in 'uses' (CRPE.pas is packaged with Crystal
Reports)

2) Add a TPrinterSetupDialog obect to the form (to allow the user to select a different
printer)

3) Create printer variables:

Var
JobHandle : Integer
ADevice, ADriver, APort : Array[0..30] of Char;
ADeviceMode : THandle;

4) Use engine calls to run the report. Issue the following functions before issuing a
PEStartPrintJob:

{ Open print job }
PEOpenEngine ()
JobHandle = PEOpenPrintJob (<filename>)

{ Change printer }

Printer.GetPrinter (ADevice, ADriver, APort, ADeviceMode) ;

PESelectPrinter (JobHandle, ADriver, ADevice, Aport,
PDevMode (PTR (ADeviceMode, 0)) ") ;

{ Start print job }
PEStartPrintJob (JobHandle, True);
PECloseEngine () ;



Q: How do I fill a listbox from a table?

A: Use a TStringList as an intermediate step.

procedure TForml.ButtonlClick (Sender: TObject);

var
list: TStringList;

begin
list := TStringlList.create;
try

list.assign(tablel.fieldByName ('notes'));
listboxl.items.assign (list);
finally
list.free;
end;
end;

You can also use tablel.fieldByName ('notes') .GetData (buffer), but that is extra
work. This is easier.



Q: How to | create a Paradox table with an Auto Increment type field programatically?
I'm using TTable.CreateTable, but TFieldType doesn't include this type.

A: Use a TQuery and SQL CREATE TABLE statement. For example:

procedure TForml.ButtonlClick (Sender: TObject):;

begin
with Queryl do
begin
DatabaseName := 'DBDemos';
with SQL do
begin
Clear;

Add ('CREATE TABLE "PDoxTbl.db" (ID AUTOINC, '),

Add ('"Name CHAR(255),"):;

Add ("PRIMARY KEY (ID))');

ExecSQL;

Clear;

Add ('CREATE INDEX ByName ON "PDoxTbl.db" (Name)');
ExecSQL;

end;

end;
end;



Q: How can | find out what all of the available fonts are?

A: You can use EnumFontFamilies, a Win API function. That uses a callback that is
handled each font in turn.

The following sample uses an object method as the callback.

unit Fontenum;
interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls;

type
TForml = class (TForm)
LstFamilies: TListBox;
Labell: TLabel;
Label2: TLabel;
MemVariations: TMemo;
Buttonl: TButton;
procedure ButtonlClick(Sender: TObject);
procedure FormCreate (Sender: TObject);
procedure LstFamiliesDblClick (Sender: TObject);
private
{ Private declarations }
Function DoEnum( Var 1f: TEnumLogFont; Var tm: TNewTextMetric;

fonttype: Integer ): Integer; export;
public
{ Public declarations }
end;
var

Forml: TForml;
implementation
{$R *.DFM}

Function TForml.DoEnum( Var 1f: TEnumLogFont; Var tm: TNewTextMetric;
fonttype: Integer ): Integer;
Begin
Result := 1;
If (fonttype and TRUETYPE FONTTYPE) <> 0 Then
Memvariations.Lines.Add( StrPas( lf.elfFullName ))
Else
MemVariations.Lines.Add( StrPas( lf.elflLogFont.lfFacename ));

End;

procedure TForml.ButtonlClick(Sender: TObject);
begin

Application.terminate;
end;



procedure TForml.FormCreate (Sender: TObject);
begin

LstFamilies.Items.Assign( Screen.Fonts );
end;

procedure TForml.LstFamiliesDblClick (Sender: TObject);
Var
familyname: Array [0..40] of Char;
begin
MemVariations.Clear;
With Sender As TListbox Do
If ItemIndex >=0 Then Begin
StrPCopy( familyname, Items[ItemIndex] );
EnumFontFamilies ( Canvas.Handle, familyname,
@TForml.DoEnum, Pointer (Self));
End;
end;

end.

———————— form file for this unit ---———----
object Forml: TForml

Left = 310

Top = 229

Width = 497

Height = 300

Caption = 'EnumFontFamilies Demo'
Font.Color = clWindowText
Font.Height = -17

Font.Name = 'System'

Font.Style = []

PixelsPerInch = 120

OnCreate = FormCreate

TextHeight = 20
object Labell: TLabel
Left = 16
Top = 8
Width = 105
Height = 20
Caption = '&Font Families'
FocusControl = LstFamilies
end
object Label2: TLabel
Left = 184
Top = 8
Width = 81
Height = 20
Caption = 'Variations'
end
object LstFamilies: TListBox
Left = 16
Top = 32
Width = 153
Height = 217

ItemHeight = 20
TabOrder = 0
OnDblClick = LstFamiliesDblClick



end

object MemVariations:

Left = 184
Top = 32
Width = 185
Height = 217
Lines.Strings = (
T )

ReadOnly True
TabOrder = 1

end

TMemo

object Buttonl: TButton

Left = 384

Top = 32

Width = 89
Height = 33
Caption = 'Close'
TabOrder = 2

OnClick = ButtonlClick

end
end



Q: How do you tell which record and which field of a TDBGrid is current?

A: Here is a method to keep track of the current column and row. The following code
in the method MyDBGridDrawDataCell updates the variables Col and Row (which must
not be local to the method) every time the grid is redrawn. Using this code you can
assume that Col and Row point to the current column and row respectively.

var
Col, Row: Integer;

procedure TForml.MyDBGridDrawDataCell (Sender: TObject; const Rect: TRect;
Field: TField; State: TGridDrawState);

var
RowHeight: Integer;
begin
if gdFocused in State then
begin
RowHeight := Rect.Bottom - Rect.Top;
Row := (Rect.Top div RowHeight) - 1;
Col := Field.Index;
end;

end;



Q: How do | change the color of a grid cell in a TDBGrid?

A:  Enter the following code in the TDBGrid's OnDrawDataCell event:

Procedure TForml.DBGridlDrawDataCell (Sender: TObject; const Rect: TRect;
Field: TField; State: TGridDrawState);
begin
If gdFocused in State then
with (Sender as TDBGrid) .Canvas do begin
Brush.Color := clRed;
FillRect (Rect) ;
TextOut (Rect.Left, Rect.Top, Field.AsString);
end;
end;

Set the Default drawing to true. With this, it only has to draw the highlighted cell. If
you set DefaultDrawing to false, you must draw all the cells yourself with the canvas
properties.



Q: How can | view dBASE records marked for deletion?

A:  Call the following function when you want to toggle between states. There is no
need to close and re-open the table when toggling like this. To call, send as
arguments name of TTable and TRUE/FALSE depending to show/not show deleted
records.

Example code:

uses DBITYPES, DBIERRS, DBIPROCS;
procedure TForml.SetDelete (OurTable: TTable; ShowDeleted: Boolean);
var

rslt: DBIResult;

szErrMsg: DBIMSG;

begin
try
OQurTable.DisableControls;
try
rslt := DbiSetProp (hDBIObj (OurTable.Handle), curSOFTDELETEON,

LongInt (ShowDeleted)) ;
if rslt <> DBIERR NONE then
begin
DbiGetErrorString(rslt, szErrMsqg);
raise Exception.Create (StrPas (szErrMsqg)) ;
end;
except
on E: EDBEngineError do ShowMessage (E.Message) ;
on E: Exception do ShowMessage (E.Message) ;
end;
finally
OurTable.Refresh;
OurTable.EnableControls;
end;
end;

{
This goes on the OnClick () event of a checkbox where the ShowDeleted of the

checkbox indicates whether we want to see the deleted records or not.
}
procedure TForml.CheckBox1lClick (Sender: TObject);
begin
SetDelete (Tablel, checkboxl.checked);
end;

end.



Here is a custom TStringGrid that will allow for inserting a whole row at a time.

unit Gridmv;
interface
uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,

Forms, Dialogs, Grids;

type

TGridMV = class (TStringGrid)

public
procedure RowMoved (FromIndex, TolIndex: Longint); override;
procedure Insert (ToIndex: Longint);

end;

procedure Register;
implementation

procedure Register;
begin

RegisterComponents ('Samples', [TGridMV]) ;
end;

procedure TGridMv.RowMoved (FromIndex, TolIndex: Longint);
begin

inherited RowMoved (FromIndex, ToIndex);
end;

{This will insert a row before the row selected.}
procedure TGridMv.Insert (ToIndex: Longint);

begin
RowCount := RowCount + 1;
RowMoved (RowCount, ToIndex);
end;

end.



Q: "How can | determine the current record number for a dataset?"

A: If the dataset is based upon a Paradox or dBASE table then the record number can
be determined with a couple of calls to the BDE (as shown below). The BDE doesn't
support record numbering for datasets based upon SQL tables, so if your server
supports record numbering you will need to refer to its documentation.

The following function takes as its parameter any component derived from TDataset
(i.e. TTable, TQuery, TStoredProc) and returns the current record number (greater than
zero) if it is a Paradox or dBASE table. Otherwise, the function returns zero.

NOTE: for dBASE tables the record number returned is always the physical record
number. So, if your dataset is a TQuery or you have a range set on your dataset then
the number returned won't necessarily be relative to the dataset being viewed, rather it
will be based on the record's physical position in the underlying dBASE table.

unit Unitl;
interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, ExtCtrls, DBCtrls, Grids, DBGrids, DB, DBTables,
DbiProcs, DbiTypes, DbiErrs;

type
TForml = class (TForm)
DataSourcel: TDataSource;
Tablel: TTable;
DBGridl: TDBGrid;
DBNavigatorl: TDBNavigator;

function RecordNumber (Dataset: TDataset): Longint;
procedure DataSourcelDataChange (Sender: TObject; Field: TField);
private
{ Private declarations }
public
{ Public declarations }
end;
var

Forml: TForml;
implementation
{SR *.DFM}
function TForml.RecordNumber (Dataset: TDataset): Longint;
var
CursorProps: CurProps;

RecordProps: RECProps;

begin



{ Return 0 if dataset is not Paradox or dBASE }
Result := 0;

with Dataset do
begin
{ Is the dataset active? }
if State = dsInactive then
ShowMessage ('Cannot perform this operation on a closed dataset');

{ We need to make this call to grab the cursor's iSegNums }
Check (DbiGetCursorProps (Handle, CursorProps)):;

{ Synchronize the BDE cursor with the Dataset's cursor }
UpdateCursorPos;

{ Fi1l1l RecordProps with the current record's properties }
Check (DbiGetRecord (Handle, dbiNOLOCK, nil, @RecordProps));

{ What kind of dataset are we looking at? }
case CursorProps.iSegNums of

0: Result := RecordProps.iPhyRecNum; { dBASE }
1: Result := RecordProps.iSegNum; { Paradox }
end;
end;

end;

procedure TForml.DataSourcelDataChange (Sender: TObject; Field: TField);

begin
if (Sender as TDataSource) .State = dsBrowse then
caption := 'Record number = ' +
IntToStr (RecordNumber (Datasourcel.Dataset)) ;
end;

end.



Here are some math functions that do not come with Delphi that may come in handy:

unit Math;

interface

function exponent (BaseNumber, ToThePowerOf: real): real;
function tan (TheVal: real): real;

function ArcSin (TheVal: real): real;

function ArcCos (TheVal: real): real;

function IntToBinaryStr (TheVal: LongInt): string;

implementation
function exponent (BaseNumber, ToThePowerOf: real): real;
begin
result := Exp (Ln(BaseNumber) * ToThePowerOf);
end;
function tan(TheVal: real): real;
begin
result := sin(TheVal) / cos(Theval):;
end;
function ArcSin (TheVal: real): real;
begin
result := ArcTan(ThevVal / sqrt(l - sqgrt(Theval)));
end;
function ArcCos (TheVal: real): real;
begin
result := ArcTan(sqrt(l - sgrt(ThevVal)) / TheVal);
end;

function IntToBinaryStr (TheVal: LongInt): string;

var
counter: LongInt;

begin

{This part is here because we remove leading zeros. That

means that a zero value would return an empty string.}
if Theval = 0 then begin

result := '0';
exit;

end;

result := '"';

counter := $80000000;

{Suppress leading zeros}

while ((counter and TheVal) = 0) do begin

counter := counter shr 1;

if (counter = 0) then break; {We found our first "1".}
end;

while counter > 0 do begin
if (counter and TheVal) = 0 then result := result + '0'



else result := result + '1';
counter := counter shr 1;
end;
end;

end.



Q: "How can | determine when the current record in a dataset has changed?"

A: Check the DataSource's State property in the OnDataChanged event. The State
property will be set to dsBrowse if the record position has changed. The
following example will display a message box every time the record position

has changed in MyDataSource:

procedure TMyForm.MyDataSourceDataChange (Sender: TObject; Field: TField);

begin
if (Sender as TDataSource) .State = dsBrowse then
ShowMessage ('Record Position Changed');

end;



Create

Show - Visible
ReSize

Activate - Visible
Paint - Visible
Close query
Close
Deactivate

Hide

Destroy



Q: How do perform something on the form's OnActivate method? (It doesn't always
fire. e.g. if you ALT-TAB to it, then OnActivate doesn't fire.)

A:
procedure TForm2.FormCreate (Sender: TObject);
begin

application.OnActivate := FormActivate;

end;



Q: How can | get rid of the ReportSmith about box splash screen when | run a report.

A: Add the following line in [RS_RunTime] section of the RS_RUN.INI file to not have
the ReportSmith about box appear when a report is ran.

ShowAboutBox=0



Q: Is it possible to access components by their name property (i.e. 'SpeedButton' +
IntToStr(i) )

A: Yes it's possible. The following example uses the FindComponent method of Form1
to disable the first 10 SpeedButtons by name.

for I := 1 to 10 do
with Forml.FindComponent ('SpeedButton' + IntToStr(i)) as TSpeedButton do
Enabled := False; {...or whatever you want to do.}



Here is an example that prints columns that are right, left, and center justified. There
are headers, footers, and, generally, a bunch o' things here. This app encapsulates
functionality to print text, lines, boxes and shaded boxes. Text can be left or right
justified and centered. Columns can be created and text can be left or right justified
within the columns or text can be centered. Lines of any thickness can be drawn.

Boxes can be drawn with any thickness.

The boxes can be shaded if desired. Headers

and footers can be created and the header/footer areas can be shaded if desired.
Page numbering can contain custom text and can be placed anywhere desired.

{******* prl’lMail’l.paS *******}

unit Prnmain;

interface
uses

SysUtils, WinTypes, WinProcs,

Forms, Dialogs, StdCtrls,

const

HeaderLines = 5;

FooterLines = 5;

Columns = 20;

type

THeaderRecord = Record
Text: Stringl[240];
YPosition: Single;
Alignment: Integer;
FontName: String[80];
FontSize: Integer;
FontStyle: TFontStyles;
End;

TFooterRecord = Record
Text: String[240];
YPosition: Single;
Alignment: Integer;
FontName: String[80];
FontSize: Integer;
FontStyle: TFontStyles;
End;

THeaderCoordinates = Record

XTop: Single;
YTop: Single;
XBottom: Single;
YBottom: Single;
Boxed: Boolean;
Shading: Word;
LineWidth: Word;
End;

Messages,
ExtCtrls,

e e

i i T NN

Classes, Graphics, Controls,
Printers;

Number of allowable header lines }
Number of allowable footer lines }
Number of allowable columns }

Header text }
Inches from the top }
O:Left 1l:Center 2:Right }

Font
Font
Font

name }
size }
style }

Footer text }

Inches from the top }
O:Left 1l:Center 2:Right }
Font name }

Font
Font

size }
style }



TFooterCoordinates = Record

XTop: Single;

YTop: Single;

XBottom: Single;
YBottom: Single;

Boxed: Boolean;

Shading: Word;
LineWidth: Word;

End;

TPageNumberRecord = Record
YPosition: Single;
Text: String[240];
Alignment: Word;
FontName: String[80];
FontSize: Word;
FontStyle: TFontStyles;
End;

TColumnInformationRecord = Record
XPosition: Single;
Length: Single;
End;

TPrintObject = class
private
TopMargin: Integer; { Top margin in pixels }
BottomMargin: Integer; { Bottom margin in pixels }
LeftMargin: Integer; { Left margin in pixels }
RightMargin: Integer; { Right margin in pixels }
PixelsPerInchVertical: Integer; { Number of pixels per inch along Y

axis }

PixelsPerInchHorizontal: Integer; { Number of pixels per inch along X
axis }

TotalPageWidthPixels: Integer; { Full width of page in pixels -
includes gutters }

TotalPageHeightPixels: Integer; { Full height of page in pixels -

includes gutters }
TotalPageHeightInches: Single;
TotalPageWidthInches: Single;
GutterlLeft: Integer;
GutterRight: Integer;
GutterTop: Integer;
GutterBottom: Integer;
DetailTop: Single;

detail section starts }

Height of page in inches }
Width of page in inches }
Unprintable area on left }
Unprintable area on right }
Unprintable area on top }
Unprintable area on bottom }
Inches from the top where the

DetailBottom: Single; { Inches from the top where the
detail section ends }

LastYPosition: Single; { The Y position where the last
write occurred }

AutoPaging: Boolean; { Are new pages automatically
generated? }

CurrentTab: Single; { The value of the current tab }

CurrentFontName: String([30];
CurrentFontSize: Integer;
CurrentFontStyle: TFontStyles;
TextMetrics: TTextMetric;



Header:
Footer:

ColumnInformation:
PageNumber:
HeaderCoordinates:
FooterCoordinates:

function
function
function
function
function
function
procedure

Array[l. .HeaderLines]
Array[l..FooterLines]

of THeaderRecord;

of TFooterRecord;

Array[l..Columns] of TColumnInformationRecord;
TPageNumberRecord;

THeaderCoordinates;

TFooterCoordinates;

CalculatelineHeight: Integer;
InchesToPixelsHorizontal ( Inches: Single ): Integer;
InchesToPixelsVertical ( Inches: Single ): Integer;
PixelsToInchesHorizontal ( Pixels: Integer ): Single;
PixelsToInchesVertical ( Pixels: Integer ): Single;
LinesToPixels( Line:Integer ): Integer;

CalculateMeasurements;

procedure DrawBox ( XTop:Word; YTop:Word; XBottom:Word; YBottom:Word;

LineWidth:Word;
public
procedure
procedure
procedure
procedure
Right:Single );
procedure
TFontStyles );
procedure
procedure
procedure
procedure
Text:String );
procedure
Text:String );
procedure
BottomY:Single;
procedure
function
procedure
procedure
function
procedure
procedure
procedure
Right:Word );
function
function
function
function
function
procedure
procedure
Text:String;

TFontStyles );
procedure
Text:String;

TFontStyles );
procedure
procedure

LineWidth:Word

Shading:Word ) ;

Start;
Quit;
Abort;
SetMargins ( Top:Single;

Bottom:Single; Left:Single;

SetFontInformation( Name:String; Size:Word; Style:
WriteLine( X:Single; Y:Single; Text:String );
WriteLineRight ( Y:Single; Text:String );
WriteLineCenter( Y:Single; Text:String );

WriteLineColumnRight ( ColumnNumber:Word; Y:Single;
WriteLineColumnCenter ( ColumnNumber:Word; Y:Single;

DrawLine ( TopX:Single;
) ;
SetLineWidth ( Width:Word ) ;

GetLineWidth: Word;

SetTab ( Inches:Single );

NewPage;

GetLinesPerPage: Integer;
GetPixelsPerInch( var X:Word; var Y:Word
GetPixelsPerPage ( var X:Word; var Y:Word
GetGutter ( var Top:Word; var Bottom:Word;

TopY:Single; BottomX:Single;

) ;
)7
var Left:Word;
GetTextWidth( Text:String ):
GetLineHeightPixels: Word;
GetLineHeightInches: Single;
GetPageNumber:Integer;
GetColumnsPerLine: Integer;
SetOrientation( Orient: TPrinterOrientation
SetHeaderInformation( Line:Integer;

Integer;

) ;

YPosition: Single;

Alignment:Word;

FontName:String; FontSize: Word; FontStyle:

SetFooterInformation( Line:Integer; YPosition: Single;

Alignment:Word;

FontName:String; FontSize: Word; FontStyle:

WriteHeader;
WriteFooter;

var



procedure
procedure
procedure
procedure
procedure

SaveCurrentFont;

RestoreCurrentFont;
SetDetailTopBottom( Top: Single; Bottom: Single );
SetAutoPaging ( Value: Boolean );

SetPageNumberInformation( YPosition:Single; Text:String;

Alignment:Word; FontName:String;

YBottom:
YBottom

XBottom:

XBottom:

Length:S

End;

implemen

:Single;

procedure
procedure
procedure
Single; L
procedure
L
procedure
Single; Y

procedure
Single; Y

procedure
ingle );
procedure
function
procedure
function
function
procedure
procedure
function
function

tation

FontSize:Word; FontStyle:TFontStyles

WritePageNumber;

WriteLineColumn ( ColumnNumber:Word; Y:Single;
DrawBox ( XTop:Single; YTop:Single;
ineWidth:Word );

DrawBoxShaded ( XTop:Single; YTop:Single;
ineWidth:Word; Shading:Word );
SetHeaderDimensions ( XTop:Single;
Bottom:Single;

Boxed: Boolean; LineWidth:Word; Shading:Word );
SetFooterDimensions ( XTop:Single; YTop:Single;
Bottom:Single;
Boxed: Boolean;

) ;

Text:String
XBottom:Single;

XBottom:Single;

YTop:Single;

LineWidth:Word; Shading:Word );

CreateColumn ( Number:Word; XPosition:Single;
SetYPosition( YPosition:Single );
GetYPosition: Single;

NextLine;

GetLinesLeft: Word;

GetLinesInDetailArea: Word;

SetTopOfPage;

NewLines ( Number:Word ) ;
GetFontName: String;
GetFontSize: Word;

procedure TPrintObject.Start;

{ This function MUST be called first before any other printing function }
var

Top,Bottom, Left,Right: Single;

I: Integer;
Begin
Printer.BeginDoc;
AutoPaging := True;
CalculateMeasurements;
PageNumber.Text := '';
Top := PixelsToInchesVertical ( GutterTop );
Bottom := PixelsToInchesVertical ( GutterBottom );
Left := PixelsTolInchesHorizontal ( GutterLeft );
Right := PixelsToInchesHorizontal( GutterRight );

SetMargins ( Top,Bottom,Left,Right );



For I := 1 To HeaderLines Do
Header[I].Text := '"';
HeaderCoordinates.Boxed := False;
HeaderCoordinates.Shading := 0;
For I := 1 To FooterLines Do
Footer[I].Text := '"';
FooterCoordinates.Boxed := False;
FooterCoordinates.Shading := 0;

CurrentTab := 0.0;

LastYPosition := 0.0;
End;

procedure TPrintObject.Quit;
{ 'Quit' must always be called when printing is completed

Begin
WriteHeader;
WriteFooter;
WritePageNumber;

Printer.EndDoc

End;
procedure TPrintObject.SetMargins( Top:Single; Bottom:Single;
Right:Single );

{ Set the top, bottom, left and right margins in inches }
var

Value:

Buffer:

Single;
String;

Begin

Left:Single;

{ If the sum of the left and right margins exceeds the width of the page,

set the left margin to the value of 'GutterLeft'
margin to the value of 'GutterRight' }

If ( Left + Right >= TotalPageWidthInches ) Then
Begin
Left := GutterLeft;
Right := GutterRight;
End;
If ( Left <= 0 ) Then
Left := GutterlLeft;
If ( Right <= 0 ) Then
Right := GutterRight;

and set the right

{ If the sum of the top and bottom margins exceeds the height of the

page, set the top margin to the value of 'GutterTop'
bottom margin to the value of 'GutterBottom' }
If ( Top + Bottom >= TotalPageHeightInches ) Then
Begin
Top := GutterTop;
Bottom := GutterBottom;

End;

and set the



If ( Top <= 0 ) Then
Top := GutterTop;

If ( Bottom <= 0 ) Then
Bottom := GutterBottom;

{ Convert everything to pixels }

TopMargin := InchesToPixelsVertical( Top );

If ( TopMargin < GutterTop ) Then
TopMargin := GutterTop;

BottomMargin := InchesToPixelsVertical( Bottom );
If ( BottomMargin < GutterBottom ) Then
BottomMargin := GutterBottom;

LeftMargin := InchesToPixelsHorizontal( Left );
If ( LeftMargin < GutterLeft ) Then
LeftMargin := GutterLeft;

RightMargin := InchesToPixelsHorizontal ( Right );

If ( RightMargin < GutterRight ) Then
RightMargin := GutterRight;

End;

procedure TPrintObject.WriteLine( X:Single; Y:Single; Text:String );

{ Write some text. The parameters represent inches from the left ('X")
and top ('Y') margins. }

var
XPixels: Integer;
YPixels: Integer;

Begin
{ How many pixels are there in the inches represented by 'X'? }
If ( X >>= 0.0 ) Then

XPixels := InchesToPixelsHorizontal( X )
Else

XPixels := LeftMargin;
If ( XPixels < GutterLeft ) Then

XPixels := Gutterleft;

{ If there is a tab set, increase 'XPixels' by the amount of the tab }
If ( CurrentTab > 0.0 ) Then
Inc( XPixels, InchesToPixelsHorizontal (CurrentTab) );

{ How many pixels are there in the inches represented by 'Y'? }
If (Y > -0.01 ) Then
{ Printing will occur at an absolute location from the top of the
page. }
Begin
YPixels := InchesToPixelsVertical( Y );
If ( YPixels < GutterTop ) Then
YPixels := GutterTop;
If ( YPixels > TotalPageHeightPixels ) Then
YPixels := TotalPageHeightPixels - GutterBottom;

LastYPosition := Y;



End;

If (Y = -1.0 ) Then
{ Write the text at the next line }
Begin
If ( AutoPaging = True ) Then
Begin

{ If the next line we're going to write to exceeds beyond the
bottom of the detail section, issue a new page }
If ( LastYPosition + GetLineHeightInches > DetailBottom ) Then

NewPage;
End;
YPixels := InchesToPixelsVertical( LastYPosition +
GetLineHeightInches );
LastYPosition := LastYPosition + GetLineHeightInches;
End;
If (Y = -2.0 ) Then
{ Write the text on the current line }
YPixels := InchesToPixelsVertical( LastYPosition );

Printer.Canvas.TextOut ( XPixels-GutterLeft,YPixels-GutterTop, Text );
End;

procedure TPrintObject.WritelLineColumn ( ColumnNumber:Word; Y:Single;
Text:String );

{ Write text, left aligned against the column represented by
'ColumnInformation[ColumnNumber] "' }

Begin
WriteLine ( ColumnInformation[ColumnNumber] .XPosition,Y,Text );
End;

procedure TPrintObject.WritelLineColumnRight ( ColumnNumber:Word; Y:Single;
Text:String );

{ Write text, right aligned against the column represented by
'ColumnInformation[ColumnNumber] "' }

var
PixelLength: Word;
StartPixel: Word;

Begin
{ How many pixels does the text in 'Text' require? }
PixelLength := Printer.Canvas.TextWidth( Text );

{ Calculate where printing should start }

StartPixel :=
InchesToPixelsHorizontal ( ColumnInformation[ColumnNumber] .XPosition +
ColumnInformation[ColumnNumber] .Length ) - PixelLength;

SetTab( 0.0 );

WriteLine ( PixelsToInchesHorizontal (StartPixel),Y,Text );
SetTab ( CurrentTab );
End;

procedure TPrintObject.WritelLineRight ( Y:Single; Text:String );



{ Print a line of text right justified 'Y' inches from the top }

var
PixelLength: Word;
StartPixel: Word;

Begin
{ How many pixels does the text in 'Text' require? }
PixellLength := Printer.Canvas.TextWidth( Text );

{ Calculate where printing should start }
StartPixel := (TotalPageWidthPixels-GutterLeft-GutterRight) - PixelLength;

SetTab( 0.0 );

WriteLine ( PixelsTolInchesHorizontal (StartPixel),Y, Text );
SetTab ( CurrentTab );

End;

procedure TPrintObject.WritelLineCenter( Y:Single; Text:String );
{ Print a line of text centered at Y inches from the top }
var

PixelLength: Integer;
StartPixel: Integer;

Begin
{ How many pixels does the text in 'Text' require? }
PixellLength := Printer.Canvas.TextWidth( Text );

{ Calculate where printing should start }
StartPixel := ((GutterLeft+ (TotalPageWidthPixels-GutterRight)) Div 2) -
(PixellLength Div 2);

SetTab( 0.0 );

WriteLine ( PixelsToInchesHorizontal (StartPixel),Y,Text );
SetTab ( CurrentTab );

End;

procedure TPrintObject.WritelLineColumnCenter ( ColumnNumber:Word; Y:Single;
Text:String );

{ Print a line of text centered within the column number represented by
'ColumnNumber', at Y inches from the top }

var
PixelLength: Integer;
StartPixel: Integer;
Pixels: Integer;

Begin
{ How many pixels does the text in 'Text' require? }
PixelLength := Printer.Canvas.TextWidth( Text );

{ Calculate where printing should start }
Pixels :=



InchesToPixelsHorizontal ( ColumnInformation[ColumnNumber].Length );
StartPixel :=
(InchesToPixelsHorizontal ( ColumnInformation[ColumnNumber] .Length )

Div 2)

InchesToPixelsHorizontal (ColumnInformation[ColumnNumber] .XPosition)

(PixelLength Div 2);

SetTab( 0.0 );

WriteLine ( PixelsToInchesHorizontal (StartPixel), Y, Text );
SetTab ( CurrentTab );

End;

procedure TPrintObject.Drawline( TopX:Single; TopY:Single; BottomX:Single;

BottomY:Single; LineWidth:Word );

{ Draw a line beginning at a particular X,Y coordinate and ending at a

particular X,Y coordinate. }

var

TopXPixels, BottomXPixels, TopYPixels, BottomYPixels: Integer;

Begin

TopXPixels := InchesToPixelsHorizontal ( TopX );
BottomXPixels := InchesToPixelsHorizontal ( BottomX );
TopYPixels := InchesToPixelsVertical ( TopY );
BottomYPixels := InchesToPixelsVertical( BottomY );

( TopXPixels,GutterLeft );

( BottomXPixels,GutterLeft );
Dec( TopYPixels,GutterTop );

( BottomYPixels,GutterTop );

Printer.Canvas.Pen.Width := LineWidth;
Printer.Canvas.MoveTo ( TopXPixels, TopYPixels );
Printer.Canvas.LineTo( BottomXPixels,BottomYPixels );

End;

procedure TPrintObject.SetFontInformation( Name:String; Size:Word;
TFontStyles );

{ Change the current font information }

Begin

Printer.Canvas.Font.Name := Name;
Printer.Canvas.Font.Size := Size;
Printer.Canvas.Font.Style := Style;

CalculateMeasurements;
End;

function TPrintObject.GetFontName: String;
{ Return the current font name }
Begin

Result := Printer.Canvas.Font.Name;
End;

Style:

+



function TPrintObject.GetFontSize: Word;
{ Return the current font size }
Begin
Result := Printer.Canvas.Font.Size;
End;

procedure TPrintObject.SetOrientation( Orient: TPrinterOrientation );

Begin
Printer.Orientation := Orient;

CalculateMeasurements;
End;

function TPrintObject.CalculatelineHeight: Integer;

{ Calculate the height of a line plus the normal amount of space between
each line }

Begin
Result := TextMetrics.tmHeight + TextMetrics.tmExternalleading;
End;
procedure TPrintObject.NewPage;
{ Issue a new page }
Begin
WriteHeader;
WriteFooter;
WritePageNumber;

LastYPosition := DetailTop - GetLineHeightInches;

Printer.NewPage;
End;

function TPrintObject.GetPageNumber;

{ Return the current page number }

Begin
Result := Printer.PageNumber;
End;
function TPrintObject.GetTextWidth( Text:String ): Integer;

{ Return the width of the text contained in 'Text' in pixels }
Begin

Result := Printer.Canvas.TextWidth( Text );

End;

function TPrintObject.GetLineHeightPixels: Word;



Begin
Result := CalculatelLineHeight;
End;

function TPrintObject.GetLineHeightInches: Single;
Begin
Result := PixelsToInchesVertical( GetLineHeightPixels );

End;

procedure TPrintObject. DrawBox( XTop:Word; YTop:Word; XBottom:Word;
YBottom:Word; LineWidth:Word; Shading:Word );

{ The low level routine which actually draws the box and shades it as
desired. The paramaters are in pixels and not inches. }

Begin
Printer.Canvas.Pen.Width := LineWidth;
Printer.Canvas.Brush.Color := RGB( Shading, Shading, Shading );

Printer.Canvas.Rectangle ( XTop,YTop,XBottom, YBottom ) ;
End;

procedure TPrintObject.DrawBox ( XTop:Single; YTop:Single; XBottom:Single;
YBottom:Single; LineWidth:Word );

{ Draw a box at the X,Y coordinates passed in the parameters }

var
BLinePixels,BColPixels,ELinePixels,EColPixels: Integer;

Begin

BLinePixels := InchesToPixelsVertical( YTop ) - GutterTop;
ELinePixels := InchesToPixelsVertical( YBottom ) - GutterTop;
BColPixels := InchesToPixelsHorizontal( XTop ) - GutterlLeft;
EColPixels := InchesToPixelsHorizontal ( XBottom ) - GutterLeft;

_DrawBox ( BColPixels,BLinePixels,EColPixels,ELinePixels,LineWidth, 255
End;

procedure TPrintObject.DrawBoxShaded( XTop:Single; YTop:Single;
XBottom:Single; YBottom:Single; LineWidth:Word; Shading:Word );

{ Draw a box at the X,Y coordinates passed in the parameters }

var
BLinePixels,BColPixels,ELinePixels,EColPixels: Integer;

Begin

BLinePixels := InchesToPixelsVertical( YTop ) - GutterTop;
ELinePixels := InchesToPixelsVertical( YBottom ) - GutterTop;
BColPixels := InchesToPixelsHorizontal( XTop ) - GutterLeft;

EColPixels := InchesToPixelsHorizontal( XBottom ) - GutterLeft;



_DrawBox ( BColPixels,BLinePixels,EColPixels,ELinePixels,LineWidth,Shading );
End;

function TPrintObject.GetLinesPerPage: Integer;

{ Return the number of lines on the entire page }

Begin

Result := (TotalPageHeightPixels - GutterTop - GutterBottom) Div
CalculatelLineHeight;

End;

function TPrintObject.GetLinesInDetailArea: Word;

{ Return the number of lines in the detail area }

Begin

Result := InchesToPixelsVertical( DetailBottom - DetailTop ) Div
CalculatelLineHeight;

End;

procedure TPrintObject.GetPixelsPerInch( var X:Word; var Y:Word );

Begin

X := PixelsPerInchHorizontal;
Y := PixelsPerInchVertical;
End;

procedure TPrintObject.GetPixelsPerPage( var X:Word; var Y:Word );

Begin

X := TotalPageWidthPixels - GutterLeft - GutterRight;
Y := TotalPageHeightPixels - GutterTop - GutterBottom;
End;

procedure TPrintObject.GetGutter( var Top:Word; var Bottom:Word; var
Left:Word; var Right:Word );

Begin

Top := GutterTop;
Bottom := GutterBottom;
Left := Gutterleft;
Right := GutterRight;
End;

procedure TPrintObject.Abort;
Begin
Printer.Abort;
End;
function TPrintObject.GetColumnsPerLine: Integer;

{ How many columns are there in a Line? }

var
Pixels: Integer;



Begin

Pixels := TotalPageWidthPixels - GutterLeft - GutterRight;
Result := Pixels Div Printer.Canvas.TextWidth( 'B' );
End;
function TPrintObject.InchesToPixelsHorizontal ( Inches: Single ): Integer;

{ Convert the horizontal inches represented in 'Inches' to pixels }

var
Value: Single;
Buffer: String;
I: Integer;

Begin
Value := Inches * PixelsPerInchHorizontal;
Buffer := FloatToStr( Value );

{ If there is a decimal point in 'Buffer', remove it. }

I :=1;
While( (Buffer[I] <> '.') And (I <= Length (Buffer)) ) Do
Inc( I );
Buffer[0] := Chr( I-1 );
Result := StrToInt( Buffer );
End;
function TPrintObject.InchesToPixelsVertical( Inches: Single ): Integer;

{ Convert the vertical inches represented in 'Inches' to pixels }

var
Value: Single;
Buffer: String;
I: Integer;

Begin
Value := Inches * PixelsPerInchVertical;
Buffer := FloatToStr( Value );

{ If there is a decimal point in 'Buffer', remove it. }

I :=1;
While ( (Buffer[I] <> '.') And (I <= Length(Buffer)) ) Do
Inc( I );
Buffer[0] := Chr( I-1 );
Result := StrTolInt( Buffer );
End;
function TPrintObject.PixelsToInchesHorizontal ( Pixels: Integer ): Single;
Begin
Result := Pixels / PixelsPerInchHorizontal;

End;



function TPrintObject.PixelsToInchesVertical( Pixels: Integer ): Single;

Begin
Result := Pixels / PixelsPerInchVertical;
End;
function TPrintObject.LinesToPixels( Line:Integer ): Integer;

{ Calculate the number of vertical pixels in 'Line' }

Begin
If ( Line <= 0 ) Then
Line := 1;
Result := (Line-1) * CalculatelLineHeight;
End;

procedure TPrintObject.SetLineWidth( Width:Word );

Begin
Printer.Canvas.Pen.Width := Width;
End;

function TPrintObject.GetLineWidth: Word;

Begin
Result := Printer.Canvas.Pen.Width;
End;

procedure TPrintObject.CalculateMeasurements;

{ Calculate some necessary measurements. Thanks to Robert Fabiszak
CompuServe: 70304,2047 fo